NUCLEAR
AND PARTICLE PHYSICS (2nd Edition)
Contents
NOTES
1
BASIC CONCEPTS
1.1
History
1.1.1
The origins of Nuclear Physics
1.1.2 The Emergence of
Particle Physics: the Standard Model and Hadrons
1.2 Relativity and Antiparticles
1.3
Symmetries and Conservation Laws
1.3.1 Parity
1.3.2 Charge
Conjugation
1.3.3 Time Reversal
1.4 Interactions and
Feynman Diagrams
1.4.1
Interactions
1.4.2
Feynman Diagrams
1.5
Particle
Exchange:
Forces
and Potentials
1.5.1 Range of Forces
1.5.2
The Yukawa Potential
1.6
Observable
Quantities:
Cross-sections
and Decay Rates
1.6.1
Amplitudes
1.6.2
Cross-sections
1.6.3
Unstable States
1.7 Units:
Length, Mass and Energy
Problems
1
2
NUCLEAR PHENOMENOLOGY
2.1
Mass Spectroscopy
2.1.1 Deflection
Spectrometers
2.1.2 Kinematic
Analysis
2.1.3 Penning Trap
Measurements
2.2 Nuclear
Shapes and Sizes
2.2.1
Charge Distribution
2.2.2 Matter
Distribution
2.3
Semi-Empirical
Mass
Formula: the Liquid Drop
Model
2.3.1 Binding
Energies
2.3.2
Semi-empirical Mass Formula
2.4
Nuclear
Instability
2.5
Radioactive
Decay
2.6
BetaĞDecay Phenomenology
2.6.1 Odd-mass Nuclei
2.6.2 Even-mass
Nuclei
2.7
Fission
2.8
GammaĞDecays
2.9
Nuclear Reactions
Problems
2
3
PARTICLE PHENOMENOLOGY
3.1
Leptons
3.1.1
Lepton Multiplets and Lepton
Numbers;
3.1.2
Universal Lepton Interactions;
the Number of Neutrinos
3.1.3
Neutrinos
3.1.4
Neutrino Mixing and Oscillations
3.1.5
Oscillation Experiments and
Neutrino Masses
3.1.6 Lepton
Numbers Revisited
3.2
Quarks
3.2.1
Evidence for Quarks
3.2.2
Quark Generations and Quark
Numbers
3.3
Hadrons
3.3.1 Flavour
Independence and Charge
Multiplets
3.3.2
Quark model spectroscopy
3.3.3
Hadron Magnetic Moments and
Masses
Problem 3
4
EXPERIMENTAL METHODS
4.1
Overview
4.2
Accelerators and Beams
4.2.1
DC Accelerators
4.2.2
AC Accelerators
4.2.3
Neutral and Unstable Particle
Beams
4.3
Particle Interactions with
Matter
4.3.1
Short-range Interactions
with Nuclei
4.3.2
Ionization Energy Losses
4.3.3
Radiation Energy Losses
4.3.4
Interactions of Photons in
Matter
4.4
Particle Detectors
4.4.1
Gas Detectors
4.4.2
Scintillation Counters
4.4.3
Semiconductor Detectors
4.4.4
Cerenkov Counters
4.4.5
Calorimeters
4.5
Multi-Component Detector
Systems
Problems 4
5
QUARK DYNAMICS: THE STRONG
INTERACTION
5.1
Colour
5.2
Quantum
Chromodynamics (QCD)
5.3
Heavy Quark Bound
States
5.4
The
Strong Coupling
Constant and
Asymptotic Freedom
5.5
Quark-Gluon Plasma
5.6
Jets
and Gluons
5.7
Colour
Counting
5.8
Deep
Inelastic
Scattering
and Nucleon Structure
5.8.1
Scaling
5.8.2
Quark-Parton Model
5.8.3
Scaling Violations and
Structure Functions
Problems
5
6
WEAK INTERACTIONS AND
ELECTROWEAK
UNIFICATION
6.1
Charged and Neutral
Currents
6.2
Symmetries
of
the
Weak Interaction
6.3
Spin
Structure of the
Weak Interactions
6.3.1
Neutrinos
6.3.2
Particles with Mass:
Chirality]
6.4
W and Z Bosons
6.5
Weak
Interactions of
Hadrons: Charged
Currents
6.5.1
Semileptonic Decays
6.5.2
Selection Rules
6.5.3
Neutrino Scattering]
6.6
Meson Decays
and CP Violation
6.6.1
CP Invariance
6.6.2
CP Violation in K-long
Decay
6.6.3
CP Violation in
B-Decays
6.6.4
Flavour oscillations
6.7
Neutral
Currents and the
Unified Theory
6.7.1
Electroweak
Unification
6.7.2
The Z-zero
Vertices and
Electroweak
Reactions
Problems 6
7
MODELS AND
THEORIES OF
NUCLEAR PHYSICS
7.1
The
Nucleon-Nucleon
Potential
7.2
Fermi Gas
Model
7.3
Shell Model
7.3.1
Shell
Structure of
Atoms
7.3.2
Nuclear
Magic Numbers
7.3.3
Spins,
Parities and
Magnetic
Dipole
Moments;
7.3.4
Excited
States
7.4
Non-Spherical
Nuclei
7.4.1
Electric
Quadrupole
Moments
7.4.2
Collective
Model
7.5
Summary
of Nuclear
Structure Models
7.6
Alpha
Decay
7.7
Beta Decay
7.7.1
Fermi theory
7.7.2
Electron
and Positron
Momentum
Distributions
7.7.3
Selection
Rules
7.7.4
Applications
of Fermi Theory
7.8
Gamma
Emission and
Internal
Conversion
7.8.1
Selection
Rules
7.8.2
Transition
Rates]
Problems
7
8
APPLICATIONS
OF NUCLEAR
PHYSICS
8.1
Fission
8.1.1
Induced
fission
and Chain
Reactions
8.1.2
Fission
Reactors
8.2
Fusion
8.2.1
Coulomb
Barrier
8.2.2
Fusion
Reaction Rates
8.2.3
Sttellar
Fusion
8.2.4
Fusion
reactors
8.3
Nuclear
Weapons
8.3.1
Fission
Devices
8.3.2
Fission/Fusion
Devices
8.4
Biomedical
Applications
8.4.1
Radiation
and Living
Matter
8.4.2
Medical
Imaging Using
Ionizing
Radiation
8.4.3
Magnetic
Resonance
Imaging
Problems
8
9
OUTSTANDING
QUESTIONS AND
FUTURE
PROSPECTS
9.1
Overview
9.2
Hadrons
and Nuclei
9.2.1
Hadron
Structure and
the Nuclear
Environment
9.2.2
Nuclear
Structure
9.2.3
Nuclear
Synthesis
9.2.4
Symmetries and
the Standard
Model
9.3
The
Origin of
Mass: the
Higgs Boson
9.3.1
Theoretical
Background
9.3.2
Experimental
Searches
9.4
The
Nature of the
Neutrino
9.4.1
Dirac or
Majorana?
9.4.2
Neutrinoless
Double Beta
Decay
9.5
Beyond
the Standard
Model:
Unification
Schemes
9.5.1
Grand
Unification
9.5.2
Supersymmetry
9.5.3
Strings and
Things
9.6
Particle
Astrophysics
9.6.1
Neutrino
Astrophysics
9.6.2
The
Early
Universe: Dark
Matter and
Neutrino
Masses
9.6.3
Matter-Antimatter
Asymmetry
9.7
Nuclear
Medicine
9.8
Power
Production and
Nuclear Waste
A
SOME
RESULTS
IN QUANTUM
MECHANICS
A.1
Barrier
Penetration
A.2
Density of
States
A.3
Perturbation
Theory and the
Second Golden
Rule
A.4
Isospin
Formalism
A.4.1
Isospin
Operators and
Quark States
A.4.2
Hadron
States
B
RELATIVISTIC
KINEMATICS
B.1
Lorentz
Transformations
and
Four-Vectors
B.2
Frames
of Reference
B.3
Invariants
Problems
B
C
RUTHERFORD
SCATTERING
C.1
Classical
Physics
C.2
Quantum
Mechanics
Problems C
D
GAUGE THEORIES
D.1
Gauge
Invariance and
the Standard
Model
D.1.1
Electromagnetism
and the Gauge
Principle
D.1.2
The Standard
Model
D.2
Particle
Masses and the
Higgs Field
E
DATA
E.1
Physical
Constants and
Conversion
factors
E.2
Tables of
Particle
Properties
E.2.1
Gauge Bosons
E.2.2
Leptons
E.2.3
Quarks
E.2.4
Low-lying
Baryons
E.2.5
Low-lying
Mesons
E.3
Tables of
Nuclear
Properties
E.3.1
Properties of
Naturally
Ocurring
Isotopes
E.3.2
The Periodic
Table
F
SOLUTIONS TO
PROBLEMS
REFERENCES
BIBLIOGRAPHY
INDEX