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Chapter 1

Introduction

1.1 Natural Units & Conversion Factors

In Quantum Mechanics we know that E = hf = ~ω and p = h
λ = ~k travelling

in quantum waves of the form ψ ∼ e
i
~
(kx−tω) or ψ ∼ e

i
~
(px−Et) & for light

c = fλ = ω
k .

For Natural Units set ~ = c = 1 using this consider the units of c & ~:

c~ = [L][T ]−1[E][T ]

= [L][E]

~ = 6.6× 10−25 GeV s

⇒ 1

GeV
= 6.6× 10−25 s

c = 3× 1010 cm s−1

⇒ c~ = 1.97× 10−14 GeV cm

⇒ 1

GeV−2 = 3.89× 10−25 cm2

= 0.398 mb
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Chapter 2

Experiments of the last 50
years

Until the 1950s particle physics was studied by observing cosmic rays in cloud
chambers and nuclear emulsion. After 1950 nucleon scattering experiments were
carried out at cyclotrons and energies became high enough to produce pions
which led to pion-nucleon scattering experiments.

In 1952 π+ + p→ ∆++ → π+ + p gave rise to theories of colour. Also from
electron beams, photons could be used γ + p → ∆++ → γ + p. Although this
has a much lower rate due to the strength of the EM coupling compared to the
strong coupling.

Other processes were also observed:

π+ → µ+ + ν

µ+ → e+ + νµ + νe

where the purely leptonic former process was of great interest.
In 1956 parity violation in the weak interaction was discovered (Lee and

Yang received the Nobel prize). The experiment was the Beta decay of polarized
cobalt 60. An asymmetry was discovered in the electron spectrum with respect
to 60Co nuclear spin.

key ⇑ : spin ↑ : movement

J = 5 J = 4 J =
1

2
J =

1

2
⇑ → ⇑ + ⇑↑ + ⇑↓

60Co → 60Ni∗ + νe,R + e−L

By the 1960s kaon beams were made at cyclotrons and this confirmed the dis-

7



8 CHAPTER 2. EXPERIMENTS OF THE LAST 50 YEARS

covery strangeness made in cosmic ray experiments, establishing the quark sub-
structure of hadrons i.e. hadrons are made of qq pairs (mesons) or as qqq sys-
tems (baryons) where q is a quark. Theorist regard the evidence for strangeness
as establishing the SU(3) flavour symmetry which we now know to be acciden-
tal. SU(3) was thought to work because of the u d and s quarks it is in fact
because of the colour carried by them and the gluons (R G or B).

2.1 Neutrino Experiments

2.1.1 Gargamelle Experiment

Using the CERN proton synchrotron protons were extracted from the acceler-
ator and impinged upon a think Beryllium target within a ’neutrino horn’. In
the target, π and K were created and the horn partially selected either posi-
tive or negative charges so the partially focused π+ decayed to µ+ and νµ. An
iron shield filtered out the remaining hadrons and muons, measurement of the
muons enabled the neutrino spectrum to be determined. Then the remainder
was a neutrino beam. The neutrinos passed in to a large heavy liquid bubble
chamber, gargamelle. It was expected that charged current interactions would
be seen (2.1) but neutral current interactions mediated by z0 were also seen
(2.2). The νµs are invisible to detectors so only the hadrons are visible in the
neutral interaction and the hadrons and muon in the charged.

This was the discovery of the neutral current in 1974

Figure 2.1: Charged Current t-channel scattering νµ + p→ µ+ + Hadrons

2.1.2 Underground Experiments

Solar neutrinos are produced primarily by:

P + P → d+ e+ + νe
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Figure 2.2: Charged Current t-channel scattering νµ + p→ νµ + Hadrons

Atmospheric neutrinos are produced primarily by proton bombardment of the
atmosphere:

P +N → π+(K+) +H

π+ → µ+ + νµ

µ+ → e+ + νµ + νe

Crudely we would expect N νe

νµ
∼ 1

2 This has been measured to be closer to 1

that would be expected. This ratio was measured to be closer to 1 (at Super
Kamiokande) demonstrating that νµ were missing. An azimuthal variation i.e.
N (νµ)Vs N (νe) was measured between the above atmosphere and the other
side of the earth (trans-geo neutrinos). About 1

2 of the trans-geo neutrinos were
lost suggesting that the neutrinos had oscillated into ντ . Oscillations imply that
neutrinos have a mass and must then have a sub-light speed velocity.

Super Kamiokande was a large water detector looking for:

νµ +N → µ− +Hhydrogen

νe +N → e− +H

both µ− and e− were detected by ∼5,000 PMTs by considering their charac-
teristic Cherenkov light (e− produce ‘fuzzy’ Cherenkov rings due while µ− have
much clearer version).

2.1.3 Solar Neutrinos

In the experiment by Ray Davis, mainly ‘high’ energy neutrinos (∼14 MeV)
were used from the process

p+7 Be→8Be+ γ

→֒8 Be+ e+ + νe
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The looked for reaction was:

νe +37 Cl→ e− +37 Ar

This was for neutrinos impinging upon a tank of C2Cl4, there were not as many
reactions as expected (the so-called ‘solar neutrino problem’).

To detect lower energy neutrinos tanks of Gallium are used:

νe +Ga→ Ge+ e−

These were also produced at a lower rate than expected. In the Sudbury neutrino
observatory (SNO) a tank of heavy water was used and the following reaction
detected:

νe + n→ e− + p

Again a deficit in the of νe was seen, 1
3 of the expectation value. Combined

with the Super Kamiokande results this explained the solar neutrino problem:
we only see 1

3 of the expected ν3 because the other 2
3 oscillate into νµ and ντ .

Further confirmation from SNO was gained when salt was added to the water
increasing the sensitivity to νµ and ντ :

νe/µ/τ + n→ νe/µ/τ + nscattered

nscattered +35 Cl→36 Cl + γ

This interaction gave a measure of the total flux which was measured to be
consistent with the (originally) predicted solar flux, hence the neutrinos were
oscillating.

2.2 Beam experiments (colliding and fixed tar-
get)

There are various different types of colliding beams, which have different prop-
erties and can probe different phenomena. We can classify them into 3 broad
types:

• e+e− collider: purely leptonic these, therefore, are very ‘clean’ with a
controllable centre of mass energy. These have a large discovery potential
but is limited by synchrotron radiation. Any further e+e− colliders will
either be linear or changed to µ−µ+.

• NN(pp) These collide nucleons, either protons or anti-protons (sometimes
one of each). These machines access the highest possible energies but
create ’messy’ interactions due to the quark composition of the protons.
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• lN: mixed colliders use a lepton and a nucleon, giving higher energies but
with a cleaner interaction obviously not as clean or as high energy as pure
leptonic or hadron colliders.

2.2.1 Lepton-nucleon scattering

In the late 1960s and early 1970s deep inelastic scattering experiments using
electrons, neutrinos and also muons probed the structure of the proton and
neutron. It looked as if scattering occured on point like objects in the nucleon
and about 50% of the nucleon interacted in this way. The remaining 50% was
carried by the gluons. This was the beginning of Q.C.D.

At HERA this was advanced further in e−p collisions e− (and some e+) at
an energy ∼27.5 GeV collided with p (∼920 GeV) yielding a centre of mass
energy ∼320 GeV. There were 2 multi purpose colliding beams experiments
which measured a wide range of phenomena: photon and proton structure;
other aspects of QCD; electroweak physics and searches for effects beyond SM
(eg leptoquarks).

Main measurements from HERA: Structure of the proton, measured over a
vast kinematic range of the the first measurements in the 1960s

Figure 2.3: Deep inelastic scattering of electrons from a parton within a proton
carrying momentum x

These measurements give an idea that as x changes you probe different
partons of the proton:

• high x ∼ valence quarks

• low x ∼ ‘sea’ of quarks

These measurements give us precise knowledge of the structure of mat-
ter. Also practically many colliders use protons which requires a good physical
knowledge of the proton in order to carry out detailed analysis.

There are two possible propagator bosons for the neutral current electron
Deep Inelastic Scattering (DIS 2.3) as well as the photon (shown) measurements
of the cross section of this process reveal that the Z0 also contributes.
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As well as neutral current process there is also the charged current process
mediated by the W boson (2.5). Comparison of neutral current against charged
current cross sections are shown in (2.6)

2.2.2 e−e+ Colliders

There have been a multitude of e−e+ experiments with a centre of mass energies
in the range ∼ few GeV to ∼ 200 GeV. There are plans for a linear e−e+ collider
that would probe into the 1 TeV (maybe up to 3 TeV) ranges.

e−e+ Discoveries:

• Charm quark discovered in 1974 at SLAC (also in proton-Be at BNL) via
detection of the decay of the ground state of J/Ψ meson MJ/Ψ ∼ 3.6 GeV

• in 1979 the gluon was discovered by the experiments at PETRA collider
at DESY with up to

√
s = 35 GeV. Although e+e− is a clean leptonic

environment they can be a powerful probe of QCD through considerations
of the products. Eg discovery of the gluon through the observation of tri-
jet events. A naive view of e+e− → pp would be that of 2.8 but through
first order corrections where gluons are radiated by the final state quarks
we get tri-jet events (2.9)

• in 1989 LEP (large e−e+ collider) turned on embarking (along with SLD,
a linear collider running at the Z0 mass) on a new era of precision physics.
Initially running at∼91 GeV (Mz) then moved through, in∼2 Mw (160 GeV)
and finally moved to ∼200 GeV (looking for the Higgs). There were
4 multi-purpose experiments (ALEPH, DELPH, LE and OPAL) most fa-
mous for the precision measurement of Electro-weak parameters (eg Mz

and Mw). The measurement of σ as a function of
√
s was fundamen-

tal to measuring Mz and constraining the number of neutrinos (2.10), it
measured Z0 mass as:

Mz = 91.1876± 0.0021 GeV

with
√
s at ∼160 GeV W± was measured:

Mw = 80.398± 0.025 GeV

in the absence of direct measurements, precise determination of known
parameters constrain new physics phenomena eg. Higgs, SUSY etc.

• In its final throes LEP also searched for the Higgs via so-called ‘Higgs-
stralung’ where a virtual z results in a real z and a Higgs. The search
energy was constant increased as

√
s > MH + Mz is required.

• The next, planned, major leptonic collider is the ILC. This will be a large
linear e+e− collider which will act as a tt factory for Higgs-stralung etc.
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2.2.3 Hadron-hadron colliders

• Discovery of the bottom quark in 1977 by production of γ mesons decaying
to µ+µ− in p-Be collisions at FNAL (2.11.

• Discovery of the W± and Z0 bosons in 1984 at the SPPS collider at CERN.
Looked for W or Z decaying leptonicaly, which are low background relative
to the hadronic decays

√
s ≃ 540 GeV in 1995

• Discovery of the top quark by CDF and D0 at
√
s = 1800 GeV in 1995.

• Measurements of transverse jet energy, Pjet
⊥ 2.12
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Figure 2.5: electron-proton DIS mediated by the W boson

Figure 2.6: Comparison of CC and NC cross-sections against exchange boson
momentum
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Figure 2.7: Total cross-section of e+e− → hadrons for a range of energies

Figure 2.8: Production of di-jets from e+e− collision

Figure 2.9: end-on view of a tri-jet event produced through e+e− collisions
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Figure 2.10: Cross sections of Z0 with various numbers of neutrinos
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Figure 2.11: The upsilon resonance in p-Be cross section
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Figure 2.12: transverse momentum of jets against cross section. note: size of
cross section scale 9 orders of magnitude
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Chapter 3

Non-relativistic Quantum
Mechanics

3.1 Shrödinger picture & probability current

For a free particle of mass, m, the classical energy-momentum relation is:

E =
p2

2m

in QM p and E become differential operators (in natural units).

E → i
d

dt
and p→ −i∇

these operate on the wavefunction

(−i)2
2m
∇2Ψ = i

dΨ

dt

− 1

2m
∇2Ψ = i

dΨ

dt

(×Ψ∗) − 1

2m
Ψ∗∇2Ψ = iΨ∗ dΨ

dt

Conjugate : − 1

2m
Ψ∇2Ψ∗ = −iΨdΨ∗

dt

Sum these terms

⇒ i(Ψ∗ dΨ

dt
+ Ψ

dΨ∗

dt
) =
−1

2m
(Ψ∗∇2Ψ−Ψ∇2Ψ∗)

(×i) d

dt
(Ψ∗Ψ) +

i

2m
(Ψ∇2Ψ∗ −Ψ∗∇2Ψ) = 0

21



22 CHAPTER 3. NON-RELATIVISTIC QUANTUM MECHANICS

integrate over a volume V:

∂

∂t

∫

Ψ∗ΨdV +
i

2m

∫

v

∇.(Ψ∇Ψ∗ −Ψ∗∇Ψ)dV = 0

the above looks like a conservation equation:

∂ρ

∂t
+ ~∇.~j = 0

where:

ρ = |Ψ|2

~j =
i

2m
(Ψ∇Ψ∗ −Ψ∗∇Ψ)

what are ρ and ~j for a plane Q wave?

Ψ = Nei(px−Et)

ρ = NN∗ = |N |2

~j =
i

2m
(Nei(px−Et)∇(e−i(px−Et)N)−N∗e−i(px−Et)∇Nei(px−Et))

=
i

2m
(NN∗(−ip)−N∗N(ip))

=
1

2m
2NN∗~p

=
~p

m
|N |2

In the SE picture the operators are time independent where as the wave func-
tions are not. In classical mechanics the operators momentum and energy are
time dependent. Can we go to a formulation of Quantum Mechanics where the
operators are time dependent?

3.2 The Heisenberg picture

Starting from the SE:

i
∂

∂t
Ψ(x, t) = ĤΨ(x, t)

recall that the expectation of an observable, Â, is given by:

〈Â〉 =

∫

Ψ∗ÂΨd3x
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solving the SE:

i
∂Ψ(x, t)

Ψ(x, t)
= Ĥ∂t

i

∫
∂Ψ(x, t)

Ψ(x, t)
=

∫ t

0

Ĥ∂t

ln[Ψ(x, t)]− ln[(x, 0)] = −iĤt
⇒ Ψ(x, t) = Ψ(x, 0)e−iĤt

now consider 〈Â〉:

〈Â〉 =

∫

Ψ∗(x, 0)eiĤtÂe−iĤtd3x

define

AH = eiĤtÂe−iĤt

⇒ dAH

dt
= iĤeiĤtÂe−iĤt + eiĤtÂ(−iĤ)e−iĤt

= i(ĤÂ− ÂĤ)

= i[ĤÂ]

Remember in the previous equations both Ĥ and Â are time independent. In
the interaction picture, time dependent perturbation theory

Ĥ = Ĥ0 + Ĥ ′

then define

Ĥ ′
I = eiĤ0Ĥ ′e−iĤ0

⇒ dĤ ′
I

dt
= i[Ĥ0, Ĥ

′]

3.3 The harmonic Oscillator

This is a mechanical system which we use to introduce the concept of creation
and annihilation operators:

Ĥ =
p2

2m
+

1

2
ω2mq2

let

â =
1√
2
(
√
mωq̂ +

i√
mω

p̂)

â† =
1√
2
(
√
mωq̂ − i√

mω
p̂)
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How do â and â† commute? given:

[q̂, p̂] = i

[â, â†] =
1

2
(mω[q̂, q̂] +

i√
mω

[p̂, q̂]mω − i
√
mω[q̂, p̂]

1√
mω

+
1

mω
[p̂, p̂])

= 1

Can write Ĥ as:

Ĥ =
1

2
(â†â+ ââ†)ω

â†â =
1

2
(mωq̂2 +

p̂2

mω
+ i(q̂p̂− p̂q̂))

ââ† =
1

2
(mωq̂2 +

p̂2

mω
+ i(p̂q̂ − q̂p̂))

⇒ â†â+ ââ† = mωq̂2 +
p̂2

mω

Recall:

Ĥ =
p̂2

2m
+

1

2
mω2q̂2

= [
p̂2

mω
+mωq̂2]

1

2
ω

= [â†â+ ââ†]
1

2
ω

= [â†â+ 1 + â†â]
1

2
ω

= ω(â†â+
1

2
)

Why can we interpret â as an annihilation operator and â† as creation? What
are [Ĥ, â] and [Ĥ, â†]?

[Ĥ, â] = [(â†â+
1

2
)ω, â]

= (â†ââ− ââ†â)ω
= [â†, â]âω

= −âω

Similarly [Ĥ, â] = â†ω.
Now consider the state |n〉 such that Ĥ|n〉 = En|n〉 what is En for state

â†|n〉?

Ĥâ†|n〉 = (â†ω + â†Ĥ)|n〉
= â†(ω + En)|n〉
= (ω + En)â†|n〉
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Similarly Ĥâ|n〉 = (En − ω)â|n〉 So the energy of the state â†|n〉 or â|n〉 is ω
greater (or smaller) than that of the state |n〉. There must be a state containing
no quanta of mechanical oscillation such that â|n〉 = 0

Now apply the creation operators to this |0〉 (ground) state:

â†|0〉 = |1〉
1√
2
(â†)2|0 > = |2〉

generally:

|n〉 =
1√
n!

(â†)n|0〉

apply the Ĥ operator to the ground state:

Ĥ|0〉 = (â†â+
1

2
)ω|0〉

=
ω

2
|0〉

Now apply Ĥ to â†|0〉
Ĥâ†|0〉 = (â†ω + Ĥâ†)|0〉

= â†(ω +
ω

2
)|0〉

=
3

2
ωâ†|0〉

Generally:

Ĥnâ
†|0〉 = (n+

1

2
)ωâ†|0〉

But,

Ĥ = â†â+
ω

2

⇒ â†â = n

cf,

Ĥn|n〉 = En|n〉

⇒ En = (n+
1

2
)ω

|n〉 = (n!)−
1
2 (â†)n|0〉

⇒ |n+ 1〉 = ((n+
1

2
)!)−

1
2 (â†)n+1|0〉

= ((n+
1

2
)!)−

1
2 â†(â†)n|0〉

= ((n+
1

2
)!)−

1
2 â†
√
n!|0〉

∴ â†|n〉 =
√
n+ 1|n+ 1〉
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likewise

â|n〉 =
√
n|n− 1〉

∴ â†â|n〉 = n|n〉

3.4 An-harmonic Oscillator

Ĥ =
p̂2

2m
+

1

2
mω2q̂2 + λq̂2

= Ĥ0 + λĤ ′

3.4.1 Rayleigh-Schrödinger Perturbation theory

we have

Ĥ0|n〉(0) = E(0)
n |n〉(0)

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . .

and |n〉 = |n〉(0) + λ|n〉(1) + λ2|n〉(2) + . . .

where |n〉(1),|n〉(2) are ⊥ to |n〉(0)

∴ Ĥ|n〉 = (Ĥ0 + λĤ ′){|n〉(0) + λ|n〉(1) + λ2|n〉(2) + . . .}
= En|n〉
= (E(0)

n + λE(1)
n + λ2E(2)

n + . . .){|n〉(0) + λ|n〉(1) + λ2|n〉(2) + . . .}

λ0 terms:

Ĥ0|n〉(0) = E(0)
n |n〉(0)

λ1 terms:

Ĥ0|n〉(1) − E(0)
n |n〉(1) + Ĥ ′|n〉(0) − E(1)

n |n〉(0) = 0

(i.e.) (Ĥ0 − E(0)
n )|n〉(1) + (Ĥ′ − E(1)

n )|n〉(0) = 0

multiply by (0)〈n|

→ 0 +(0) 〈n|(Ĥ ′ − E(1)
n )|n〉(0) = 0

∴ 〈E(1)
n 〉 =(0) 〈n|Ĥ ′|n〉(0)
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can also multiply by (0)〈m| which is orthogonal to |n〉(0)

0 =(0) 〈m|Ĥ0|n〉(1) −(0) 〈m|E0
n|n〉(1) +(0) 〈m|Ĥ ′|n〉(0) −(0) 〈m|E1

n|n〉(0)

⇒ 0 =0 〈m|E0
m − E0

n|n〉1 +0 〈m|Ĥ ′|n〉0 − 0

∵ (0)〈m|Ĥ0 =(0) 〈m|E0
m

⇒ 0〈m|n〉1 =
0〈m|Ĥ ′|n〉0
−E0

m + E0
n

∴ |n〉 = |n〉0 + λ|n〉1 . . .

= |n〉0 + λ
∑

m

|m〉0
0〈m|Ĥ ′|n〉0
−E0

m +E0
n

where we have used the identity:

|n〉′ =
∑

m

|m〉00〈m|n〉0

so what is λq̂3 (sometimes x3)

â =
1√
2
(
√
mωq̂ +

i√
mω

p̂)

â† =
1√
2
(
√
mωq̂ − i√

mω
p̂)

â+ â† =
1√
2
(2
√
mωq̂)

∴ q̂ =
1√

2mω
(â+ â†)

⇒ q̂3 =
1

2
√

2(mω)
3
2

(â+ â†)3

so we need:

λ

2
√

2(mω)
3
2

∑

m

|m〉0
0〈m|(â+ â†)3|n〉0
−E0

m + E0
n

0〈m|(â+ â†)3|n〉0 =0 〈m|(â2 + ââ† + â†â+ â2)(â+ â†)|n〉0

given:

[â, â†] = 1

â†â = n

â†|n〉 =
√
n+ 1|n+ 1〉

â|n〉 =
√
n|n− 1〉
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result:

0〈m|(â+ â†)3|n〉0 =

0〈m|
√

n(n− 1)(n− 2)|n− 3〉0

+0 〈m|
√

(n+ 1)(n+ 2)(n+ 3)|n+ 3〉0

+0 〈m|(3n+ 2)
√

n)|n− 1〉0

+0 〈m|(3n+ 1)
√

n+ 1)|n+ 1〉0

3.5 Lagrangian

Physical systems evolve such that the action, s:

S =

∫

L(q, q̇)dt

is a minimum, if:

S =

∫ t1

t2

L(q, q̇)dt

then:

δS =

∫ t1

t2

(
∂L
∂q
δq +

∂L
∂q̇
δq̇)dt = 0

δq̇ =
d

dt
δq

δS =

∫ t1

t2

(
∂L
∂q
δq +

∂L
∂q̇

d

dt
δq)dt = 0

=

∫ t1

t2

(
∂L
∂q
δq − d

dt
(
∂L
∂q̇

)δq)dt+

[
∂L
∂q̇
δq

]t2

t1

where : 0 =

[
∂L
∂q̇
δq

]t2

t1

as : δq(t1) = δq(t2)

∴ 0 =
∂L
∂q
δq − d

dt
(
∂L
∂q̇

)δq

⇒ ∂L
∂q
δq =

d

dt
(
∂L
∂q̇

)δq Euler− Lagrange
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for the harmonic oscillator:

L =
1

2
mq̇2 − 1

2
mω2q2

∂L
∂q̇

= mq̇

∂L
∂q

= −mω2q

∴ mq̈ = −mω2q

in Quantum Mechanics variables (eg momentum) are operators which in general
do not commute. Specifically q̂ and p̂: [q̂, p̂] = i where p̂ is the generalisation:

p̂ =
∂L
∂q̇

The Heisenberg equation of motion for an operator, â, is:

dÂ

dt
= i[Ĥ, Â]

The Hamiltonian defined in terms of L is:

Ĥ = p̂ˆ̇q − L

so in the classical oscillator case we had:

L =
1

2
mˆ̇q2 − 1

2
mω2q̂2

As Ĥ = p̂ ˆ̇q − L

= p̂ ˆ̇q − 1

2
mˆ̇q2 +

1

2
mω2q̂2

= p̂
p̂

m
− 1

2
m
p̂2

m2
+

1

2
mω2q̂2

=
1

2m
p̂2 +

1

2
mω2q̂2

3.6 Dirac-Delta function

This may be thought of as a function of height 1
∆x and width ∆x around a value

x = x0 in the limit δx→ 0 (3.1) Area of Dirac-delta function:

A =

∫ ∞

−∞

δ(x− x0)dx = 1
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Figure 3.1: Schematic of the Dirac delta

Consider the function f(x) to be split into elements ∆x wide:
∫

f(x)dx =
∑

i

f(xi)∆x

⇒
∫

f(x)δ(x− x0) =
∑

i

f(xi)δ(xi − x0)∆x

= f(x0)

Some useful expressions for the delta function:

1. δ(x) = limǫ→0
1
ǫ for −ǫ

2 < x < ǫ
2

2. δ(x) = limǫ→0
ǫ

π(x2+ǫ2) Breit-Wigner resonance formula

3.
∫
δ(x)dx = 1 at x = 0, it has value 1

πǫ at what value of x does this function
fall to 1

2 of its height?

1

2πǫ
=

ǫ

π(x2 + ǫ2)

xhalf height = ±ǫ
so 2ǫ = Γ is the width at half height ,Γ

4.

δ(x− x0) =
1

2π

∫ ∞

−∞

eik(x−x0)dk

Consider Fourier analysis. Recall for a well behaved function of x be-
tween −ℓ

2 and ℓ
2 , it can be expressed as a Fourier series of functions with

wavelengths ℓ, ℓ
2 , ℓ

3 etc.

f(x) =

∞∑

n=−∞

an exp

{−i2πnx
ℓ

}

∆n
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to find an integrate over both sides:

∫ ℓ
2

−ℓ
2

dxf(x) exp

{−i2πnx
ℓ

}

=

∫ ℓ
2

−ℓ
2

dxan

⇒ an =
1

ℓ

∫ ℓ
2

−ℓ
2

dxf(x) exp

{−i2πnx
ℓ

}

Consider the limit as ℓ→∞:

f(x) =

∞∑

n=−∞

an exp

{−i2πnx
ℓ

}

∆n

define:

k =
2πn

ℓ

dk =
2π∆n

ℓ

f(x) =
∞∑

n=−∞

an exp(ikx)
ℓ

2π
dk

=
1

2π

∫ ∞

−∞

eikxg(k)dk

where:

g(k) = ℓan

=

∫ ∞

−∞

f(k)e−ikxdk

⇒ f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

f(k)e−ikx′

eikxdkdk′

=
1

2π

∫ ∞

−∞

f(x′)

∫ ∞

−∞

1

2π
eik(x−x′)dkdk′

so

δ(x− x′) =
1

2π

∫ ∞

−∞

eik(x−x′)dk

5. δ(ax) = 1
aδ(x) this can be seen by::

let ax = y

adx = dy

→
∫

δ(ax)dx =

∫

δ(y)
dy

a

=
1

a
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6. δ(x) = δ(−x): see above

7.

δ(f(x)) =
∑

i

δ(x− ai)
df
dx |x=ai

where ai are the roots of f(x) = 0

At each place where f(x) = 0, then:

f(x) = f(ai)

= (x− ai)
df

dx
|x=ai

. . .

the delta function has non-zero contributions from each of the roots ai of
the form:

δ

(

f(x) =
∑

i

(x− ai)
df

dx
|x=ai

)

⇒ δ(f(x)) =
∑

i

δ(x− ai)
df
dx |x=ai

3.7 The Heaviside unit step function

Figure 3.2: The Heaviside function



3.8. SPECIAL RELATIVITY 33

Heaviside unit step function has the following definition:

θ(x) =

{

1 x > 0

0 x < 0

∂θ

∂x
= δ(x)

=
1

2π

∫

e−iωxdω

⇒ θ =
1

2π

∫∫

e−iωxdωdx

=
1

2π

∫
e−iωx

−iω dω

=
1

2π

∫
e−iωx

ω + iǫ
dω

using Cauchy’s Theorem:

∮

c

f(z)

z − adz = 2πif(a)

⇒ θ =
−1

2πi
.2πie−ix,−iǫ

= e−ǫx

for ǫ→ 0, θ → 1

3.8 Special Relativity

Brief recap as we will be calculating processes for which vc̃.

4-vectors are defined as:

xµ = (t, ~x) xµ = (t,−~x)
pµ = (E, ~p) pµ = (E,−~p)

scalar products are:

x.y = xµy
µ = txty − ~x.~y

p.q = pµq
µ = EpEq − ~p.~q

also

xµ = gµνx
ν

xν = gνµxµ
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where gµν (or gµν) is the metric tensor defined as:

gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







gµνg
µν =

∑

µ

∑

ν

gµνg
µν

=
∑

µ

gµµg
µµ

= 4

3.8.1 Quantum operators as 4-vectors

originally: E = i
∂

∂t
and: p = i∇

combine as a 4-vector: pµ = i(
∂

∂t
,−∇)

= i
∂

∂xµ

= i∂µ

conversely (note sub/super script positioning):

∂µ =
∂

∂xµ

= (
∂

∂t
,∇)

From these two we can form the invariant operator:

∂µ∂
µ = �2

=
∂2

∂t2
−∇2

3.9 Lorentz Transformation

A Lorentz transformation relates co-ordinates in two frames. Under a Lorentz
transformation, where the x1 axis has a velocity, v, causes xµ to transform as:

t′ = γ(t− vx1)

x1′ = γ(−vt+ x1)

x2′ = x2

x3′ = x3
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3.10 The light cone

let xµ be the 4-vector, (x0, ~x). Suppose we have someone at yµ = (y0, ~y) who
sends out a light signal. Now consider the difference of x and y squared:

(xµ − yµ)2 = (x0 − y0)2 − (~x− ~y)2

if this is 0, i.e. (x0 − y0)2 = (~x− ~y)2, then this is the equation for a light beam
and defines a light cone.

if (x0 − y0)2 − (~x− ~y)2 > 0, then the separation is time like, we are within
the forward light cone and causally connected.

if (x0− y0)2− (~x− ~y)2 < 0, then the separation is space like and there is no
causal connection.

3.11 Relativistic Kinematics

Usually consider either A→B+C (decay) or A+B→C+D (scattering). For de-
cays the centre of mass energy is the mass of the particle, A. For a scattering
process it is the invariant mass:

s = (Pµ
A + Pµ

B)2 = (Pµ
C + Pµ

D)2

For a fixed target experiment B is at rest:

s = (EA + EB)2 − (~pA + ~pb)
2

= (EA +mB)2 − (~pA + 0)2

= E2
A +m2

B + 2EAmB − ~p2
A

= m2
A +m2

B + 2EAmB

in the case that EA ≫ mA,mB

√
s =

√

2EAmB

for a collider in the CMS where ~pA = −~pB and in the massless limit the energy
becomes:

s = (EA + EB)2 − (~pA + ~pb)
2

= m2
A +m2

b + 2EAEB − 2~pA.~pB

= 2EAEB + 2EAEB (m→ 0, ~pA = ~pB)

⇒
√
s = 2

√

EAEB

eg at HERA EP = 920 GeV and Ee = 27.5 GeV giving
√
s as 318.1 GeV
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To transform between the centre of mass frame and the laboratory frame we
need to calculate β and γ

β =
3-momenta part of the vector

Energy part of the vector

=
~pA + ~pB

EA + EB

γ =
EA + EB√

s

Energy and momentum in the centre of mass frame can be determined using
invariance rather than a Lorentz transform.

Pµ
A + Pµ

B = (
√
s, 0)

PAµ(Pµ
A + Pµ

B) = ECMS
A

√
s

⇒ m2
A + PAµP

µ
B = ECMS

A

√
s (1)

as s = (Pµ
A + Pµ

B)(PAµ + PBµ)

= PA.PA + PB .PB + 2PA.PB

⇒ PA.PB =
1

2
(s−m2

A −m2
B) (2)

substitute 2 into 1

ECMS
A =

2m2
A + s−m2

A −m2
B

2
√
s

=
s+m2

A −m2
B

2
√
s

(PCMS
A )2 =

s+m2
A −m2

B

2
√
s

−m2
A (E2 = P 2 +m2)

=
1

4s

[
s− (m2

A +m2
B)2

] [
s− (m2

A −m2
B)2

]

3.12 Mandelstam Variables

The Mandelstam variables for a scattering process:

s = (PA + PB)2

t = (PA − PC)2

= (PB − PD)2

= q2 (momenta of the exchange particle)

u = (PA − PD)2

= (PC − PB)2
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Figure 3.3: Basic form of scattering process: two particles enter, two particles
leave

s-channel: annihilation process t-channel scattering: momentum transfered PA →

Figure 3.4: s-channel: annihilation of A and B producing C and D

PC u-channel scattering: momentum transfered PA → PD

A useful product of the variables is:

s+ t+ u = (PA + PB)2 + (PA − PC)2 + (PA − PD)2

= P 2
A + P 2

B + 2PA.PB + P 2
A + P 2

C − 2PA.PC + P 2
A + P 2

D − 2PA.PD

= 3m2
A +m2

B +m2
C +m2

D + 2PA.(PB − PC − PD)

as :PA + PB = PC + PD

⇒ −PA = PB − PC − PD

= 3m2
A +m2

B +m2
C +m2

D + 2PA.(−PA)

= 3m2
A +m2

B +m2
C +m2

D − 2m2
A

= m2
A +m2

B +m2
C +m2

D
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Figure 3.5: t-channel scattering: A scatters to C and B scatters to D

Figure 3.6: u-channel scattering: A scatters to D and B scatters to C



Chapter 4

Relativistic spin-0 Particles

4.1 The Klein-Gordon equation

The quantum wave function for a free scalar particle propagating in the x-
direction is

φ ∼ ei(~p.~x−Et)

⇒ φ ∼ eipµxµ

Now we repeat the procedure which yielded the Shrödinger equation, but using
E2 = P 2 +m2 transform this relation into an equation active on φ

−∂
2φ

∂t2
= −∇2φ+m2φ (1)

This is the Klein-Gordon equation (or relativistic Shrödinger) equation. The
complex conjugate of it is:

−∂
2φ∗

∂t2
= −∇2φ∗ +m2φ∗ (2)

[φ∗ × (1)− φ× (2)] ∗ −i

i

[

φ∗
∂2φ

∂t2
− φ∂

2φ∗

∂t2

]

= i
[
φ∗∇2φ− φ∇2φ∗

]
(m2 terms cancel)

0 = i
∂

∂t

[

φ∗
∂φ

∂t
− φ∂φ

∗

∂t

]

− i∇ [φ∗∇φ− φ∇φ∗]

This is of the form ∂ρ
∂t +∇.j = 0 where ρ is the probability density and j is the

density flux.

39
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What is ρ if φ = Nei(p.x−Et)?

ρ = i

[

φ∗
∂φ

∂t
− φ∂φ

∗

∂t

]

= i
(

N∗e−i(p.x−Et).(−iE)Nei(p.x−Et) −Nei(p.x−Et).(iE)N∗e−i(p.x−Et)
)

= 2ENN∗

similarly we can work out j

~j = 2NN∗~p

This approach (beginning with E2 = P 2 +m2) at first seemed problematic due
to the negative solutions of E = ±

√
P 2 +m2 which leads to negative probability

densities (ρ < 0).

Note that this problem could have been anticipated, under a Lorentz boost
of velocity, v, a volume element undergoes contraction:

d3x→ d3x
√

1− v2

therefore to maintain the invariance of ρd3x ρ transforms as:

ρ→ ρ√
1− v2

4.2 The ‘problem’ in the Klein-Gordon equation

There are two steps with which the negative probability densities are removed.
These steps work for scalar particles. In 1934 Pauli and Weisskopf revived the
Klein-Gordon equation by multiplying jµ[= (ρ,~j)] by the charge of the particle,
so that qjµ becomes

jµ
EM = −ie(

[

φ∗
∂φ

∂t
− φ∂φ

∗

∂t

]

; [φ∗∇φ− φ∇φ∗])

Now ρ = j0EM is a charge density which can be negative.

4.3 Feynman-Stückelberg interpretation of E<0

The idea is that negative E solutions describe a negative energy particle propa-
gating backwards in time, or equivalently, a positive energy anti-particle prop-
agating forwards in time.

Consider an electron: energy, E, momentum, ~p and charge, -e

jµ
EM (e−) = −2eN∗N(E, ~p)
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for a positron

jµ
EM (e+) = 2eN∗N(E, ~p)

= −2eN∗N(−E,−~p)

This is the same as jµ
EM (e−) but with −E and −~p so the emission of a positron

with energy, E, is the same as the absorption of an electron energy, -E. (see 4.1
and 4.2)

Figure 4.1: an electron scatters at a then again at b, all particles move forward
in time

Figure 4.2: at ‘b’ an e+e− pair is created, the e− leaves the volume, the e+

propagates forward in time to ‘a’ where it annihilates with another e−

4.4 The Propagator Approach

we want to know the quantum wave Ψ(~x′, t′) given the wavefunction at initial
co-ordinates Ψ(~x, t)

Ψ(~x′, t′) = i

∫

d3xG(~x′, t′; ~x, t)Ψ(~x, t)

where G(~x′, t′; ~x, t) is Greene’s function.

For t′ > t the wavefunction has been propagated by G from x to x′
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Now consider a scattering process. An incident particle described by the
plane quantum wave φ(~x, t) is incident on a potential V (~x, t). Shroödinger’s
equation should describe what happens:

(Ĥ0 + V )Ψ = i
∂Ψ

∂t

i∂Ψ(~x, t)− Ĥ0Ψ(~x, t)dt = V (~x, t)Ψ(~x, t)dt

Suppose the potential acts at ~x, t for a short interval ∆t

∴ i∂Ψ(~x1, t1)−
∫ t1+∆t1

t1

Ĥ0Ψ(~x1, t1)dt1 =

∫ t1+∆t1

t1

V (~x1, t1)Ψ(~x1, t1)dt1

∆Ψ(~x1, t1) = −iV (~x1, t1)Ψ(~x1, t1)∆t1

∵ Ĥ0 ≈ 0 (for soft scatters)

⇒ ∆Ψ(~x1, t1) ≈ −iV (~x1, t1)φ(~x1, t1)∆t1

(where) Ψ(~x1, t1) ≈ φ(~x1, t1) + ∆Ψ(~x1, t1)

Thus we have:

∆Ψ(~x′1, t
′
1) = i

∫

d3xG(~x′, t′; ~x1, t1)∆Ψ(~x1, t1)

Ψ(~x′1, t
′
1) = φ(~x′1, t

′
1) + ∆Ψ(~x′1, t

′
1)

Ψ(~x′1, t
′
1) = φ(~x′1, t

′
1) +

∫

d4x1G0(x
′; 1)φ(1)

where x′ = (~x′, t′)

and 1 = (~x1, t1)

turn on the potential at ~x2, t2 for ∆t2

Ψ(x′) = φ(x′) +

∫

d3x1G0(x
′; 1)V (1)φ(1)∆t1

+

∫

d3x2G0(x
′; 2)V (2)φ(2)∆t2

+

∫ ∫

d3x1d
3x2G0(x

′; 2)V (2)G0(2; 1)V (1)φ(1)∆t1∆t2

limit of continous interaction and integrating over ∆t1,∆t2

Ψ(x′) = φ(x′) +

∫

d4x1G0(x
′; 1)V (1)φ(1)

+

∫ ∫

d4x1d
4x2G0(x

′; 2)V (2)G0(2; 1)V (1)φ(1)

want to find G0(2; 1) i.e. the propagator i.e. the propagator for all intermediate
states

Ψ(x′) = i

∫

t′>t

d3x G(~x′, t′; ~x, t)Ψ(~x, t)
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This can be written in a form valid for all time:

θ(t′ − t)Ψ(x′) = i

∫

d3x G(~x′; ~x)Ψ(~x)

where θ(t′ − t) =

{

1 for t′ > t

0 otherwise

Using SE:

[

i
∂

∂t
− Ĥ(x′)

]

θ(t′ − t)Ψ(x′) = iδ(t′ − t)Ψ(x′) + θ(t′ − t)i ∂
∂t

Ψ(x′)− Ĥ(x′)θ(t′ − t)Ψ(x′) (LHS)

= iδ(t′ − t)Ψ(x′)

= i

∫

d3x

{

i
∂

∂t
− Ĥ(x′)

}

G(x′;x)Ψ(x) (RHS)

Consider a particle in the absence of a potential i.e. V=0 then solve explicitly
for the free particle propagator

i

∫

d3x

{

E − p2

2m

}

G0(x
′;x)Ψ(x) (RHS)

use a Fourier transform to go into 4-momenta space

= i

∫
d3p

(2π)3
dE

2π

{

E − p2

2m

}

G0(E, p)e
ip(x′−x)eiE(x′−x)Ψ(x) (RHS)

= iδ(t′ − t)Ψ(x′) (LHS)

= iδ(t′ − t)
∫

d3xΨ(x)δ3(~x′ − ~x)

= iδ4(x′ − x)Ψ(x)

LHS = RHS

⇒ δ4(x′ − x)Ψ(x) = i

∫
d3p

(2π)3
E

2π
eip(x′−x)eiE(x′−x)Ψ(x)

if: G0 =
1

E − p2

2m

The free particle propagator for real or virtual particles in momentum space
is the inverse of the free SE

We shall assume that the propagator of the Klein-Gordon, Dirac and Proca
equation are obtained by inverting the appropriate equation



44 CHAPTER 4. RELATIVISTIC SPIN-0 PARTICLES



Chapter 5

Calculations

5.1 Spin-less Electron Muon Scattering

Figure 5.1: electron muon scattering in the t channel

We start with Klien-Gordon equation include the electromagnetic interaction
In electrodynamics the motion of a particle of charge, -e, in an EM potential,

Aµ, is obtained by substition of pµ → pµ + eAµ so:

E2 − p2 = m2

or: pµp
µ = m2

becomes: (pµ + eAµ)(pµ + eAµ) = m2

In QM this is:

(i∂µ + eAµ)(i∂µ + eAµ)φ = m2φ

(−∂µ∂
µ + ie∂µA

µ + ieAµ∂
µ + e2AµA

µ)φ = m2φ

⇒ ∂µ∂
µφ+m2φ = −V φ

45
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where V is the EM perturbation.

The transition amplitude:

Tfi = −i
∫

d4xφ∗f (x)V (x)φi(x)

= −i
∫

d4xφ∗f (x)(−ie)(∂µA
µ +Aµ∂

µ)φi(x)

Where the second order term in V(x) has been dropped, transform the first
term so that ∂µ acts upon φ∗f

∫

φ∗f∂µA
µφid

4x =
[
φ∗fA

µφi

]∞

−∞
−
∫

d4x∂µφ
∗
fA

µφi

⇒ Tfi = −e
∫

d4
{
φ∗fAµ∂

µφi − ∂µφ
∗
fAµφi

}

[
φ∗fA

µφi

]∞

−∞
= 0 as lim

→∞
Aµ → 0

Tfi = −i
∫

d4xAµjfi
µ

at top vertex we have particle A described by: φA = NAe
−ipAx changing to

particle C: φC = NCe
−ipCx

⇒ jCA
µ (x) = −ie

{
N∗

Ce
ipCxNAe

−ipAx(−ipA)µ −N∗
Ce

ipCx(ipC)µNAe
−ipAx

}

= −eN∗
CNA(pA + pC)µe

i(pC−pA)x

jCA
µ = jfi

µ

For Aµ use Maxwell’s equations �2Aµ(x) = jµ(x) we can find a solution to this
by inspection. The Aµ field arises from the EM current at the bottom vertex

jµ
DB = −eN∗

DNB(pB + pD)µei(pD−pB)x

We can guess the solution:

Aµ =
−gµνj

DB
ν

q2

where: q = pD − pB



5.1. SPIN-LESS ELECTRON MUON SCATTERING 47

Check:

∂µ∂
µ−1

q2
jµ
DB =

−1

q2
jµ
DB(i(pD − pB))2

=
−1

q2
jµ
DB(−q2)

= jµ
DB

⇒ Tfi = −i
∫

d4x jCA
µ (x)Aµ

= −i
∫

d4x
{

−eN∗
CNA(pA + pC)µe

i(pC−pA)x
}{−1

q2
(−e)N∗

DNB(pD + pB)µei(pD−pB)x

}

=
ie2

q2

∫

d4xN∗
CNAN

∗
DNB(pA + pC)µ(pD + pB)µei(pC+pD−pB−pA)
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Chapter 6

Definition of cross-section

We imagine this happening in an interaction volume V. We normalise such that
there are 2E particles of each kind in the volume. If:

φA = NAe
−ipAx

⇒
∫

ρd3x =

∫

2Eφ∗AφA

= 2EN∗
ANAV

= 2E

where: NA =
1√
V

The number of transitions per unit time per unit volume, wfi is given by:

wfi =
T ∗

fiTfi

tV

the cross section is given by:

σ =
wfi × (number of final states)

initial flux

T ∗
fiTfi =

e4

q4

∫∫
1

V 4
{(pA + pC)µ(pD + pB)µ}2 ei(pC+pD−pB−pA)e−i(pC+pD−pB−pA)d4x d4x′

⇒Wfi =
e4

q4
1

V 4
{(pA + pC)µ(pD + pB)µ}2

{
δ4(pC + pD − pB − pA)(2π)4��tV

��tV

}

What is the number of final states? Each particle in the final state has a 3-
momentum between (pc and pc + d3pc) and (pD and pD + d3pD) as well as an
energy between (EC and EC + dEC) and (ED and ED + dED).

These particles are imagined to be waves which enter and leave the interac-
tion volume. The propagator particle only exists within the interaction volume.
It must have the wavefunction of a particle in an infinite square well. This
constraint leads to the quantization of momentum.

49
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Suppose x = 0 is the entrance and x = ℓ is the exit then:

pxℓx = 2πnx

where nx is an integer. What then is the separation ∆px of the modes?

(px + ∆px)ℓx = 2π(nx + 1)

⇒ ∆px =
2π

ℓx

Therefore the number of final states are:

Nfinal states =
dPx

2π

dPy

2π

dPz

2π
.ℓxℓyℓz

=
V

(2π)3
d3p

There are 2E particles in V ⇒ the number of final states becomes:

Nfinal states =
V

(2π)32E
d3p

The initial flux (A and B particles) factor ρAρBvAB where ρ is the density of
particles in the volume, V, with relative velocity vAB

flux =
2EA

V

2EB

V
vAB

=
2EA

V

2EB

V

(
PA

EA
− PB

EB

)

in C.M.S: PA = PB

⇒ flux =
4EAEB

V 2

EBPA − EAPB

EAEB

=
4

V 2
PA(EA + EB)

=
4

V 2
PA

√
s

6.1 Combining all the terms of the cross-section

dσ =
e4

q4
(2π)4

V 4
{(PA + PC)µ(PD + PB)µ}2 δ(PC + PD − PA − PB)

V d3PC

2EC(2π)3
V d3PD

2ED(2π)3 4

where: wfi =
e4

q4
(2π)4

V 4
{(PA + PC)µ(PD + PB)µ}2 δ(PC + PD − PA − PB)

The final states =
V d3PC

2EC(2π)3
V d3PD

2ED(2π)3

and flux =
V 3

4PA

√
S
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Let’s consider the number of particles and simplify per unit volume per particle
in the final state, we have:

dQ =
V

2EC

d3PC

(2π)3
V

2ED

d3PD

(2π)3
(2pi)4δ(PC + PD − PA − PB)

where dQ is a Lorentz invariant phase space (excluding some unimportant
terms) Convert this to centre of mass frame:

dQ = (2π)4δ(
√
s− (EC + ED)) δ(PC + PD)

d3PC

2EC(2π)3
d3PD

2ED(2π)3
V 2

reduce by integrating over d3PD

dQ = (2π)4δ(
√
s− (EC + ED))

d3PC

2EC(2π)3
1

2ED(2π)3
V 2

∫

d3PC = 2πPC sin θPCdθdPC

= P 2
C dPC dΩ

⇒ dQ =
V 2

4π2
δ(
√
s− (EC + ED))

1

4ECED
P 2

C dPC dΩ

where θ is the scattering angle (??) in centre of mass system:

Figure 6.1: schematic of e−µ− scattering
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√
s = EC + ED

= (P 2
C +m2

C)
1
2 + (P 2

D +m2
D)

1
2

in CMS PC = −PD

⇒
√
s = (P 2

C +m2
C)

1
2 + (P 2

C +m2
D)

1
2

d
√
s =

1

2

2PCdPC
√

P 2
C +m2

C

+
1

2

2PCdPC
√

P 2
C +m2

D

=
PC(ED + EC)

ECED
dPC

⇒ dQ =
V 2

4π2
δ(
√
s− (EC + ED))

1

4
dΩ

PC

EC + ED
d
√
s

Integrate over
√
s, remember

√
s = EC + ED

⇒ dQ =
V 2

16π2
dΩ

PC√
s

substitute back into dσ

dσ =
e4

q4
1

V 4
{(PA + PC)µ(PB + PD)µ}2 dQ V 2

4PA
√
s

dQ→ dσ

dΩ
=

1

64π2s

PC

PA

e4

q4
{(PA + PC)µ(PB + PD)µ}2

Work out the cross-section in the massless limit:

remember: q2 = (PA − PC)2

= (EA − EC , ~PA − ~PC)2

as: m→ 0⇒ |E| ∼ |~p|
⇒ q2 = E2

A + E2
C − 2EAEC − E2

C − E2
A + 2EAEC cos θ

= −2EAEC(1− cos θ)

⇒ q4 = 4E2
AE

2
C(1− cos θ)2

{(PA + PC)µ(PB + PD)µ}2 = {PA.PB + PA.PD + PC .PB + PC .PD}2

using: PA = (P,−~P )

PB = (P,−~P )

PC = (P, ~P ′)

PD = (P,−~P ′)

⇒ {(PA + PC)µ(PB + PD)µ}2 = (6P 2 + 2P 2 cos θ)

⇒ dσ

dΩ
=

e4

64π2s

(
3 + cos θ

1− cos θ

)2
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6.1.1 Note on decays

What is the number of states and the flux factor for decays?

A→ B + C

The number of final states factor is as before:

Nfinal states =
1

16π2

PCV
2

mA
dΩ

as:
√
s = ma

for decaying particles we have 2EA i.e. 2mA in CMS in volume, V

∴ ρ =
2mA

V
makes the combined factor:

=
1

ρ
Nfinal

=
V

2mA

1

16π2

PCV
2

mA
dΩ

=
1

32π2

PCV
3

m2
A

dΩ

This gives the decay rate:

dΓ

dΩ
= |Tfi|2

1

32π2

PCV
3

m2
A



54 CHAPTER 6. DEFINITION OF CROSS-SECTION



Chapter 7

Relativistic spin 1

2
particles:

Dirac equation

7.1 Non-relativistic

We have 2 spin states: up +1
2 and down − 1

2 . In spin states we have spin
operators given by:

Ŝ =
~

2
σ̂

where σ are the Pauli matrices.
Spin algebra is the same as that of orbital angular momentum

L2 = ℓ(ℓ+ 1)~2

In spin angular momentum:

s2 = s(s+ 1)~2

the Pauli matrices are:

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0
0 −1

)

with: σx = σy = σz = I2×2

communication relation:

[σi, σj ] = 2iǫijkσk
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where ǫijk is the Levi-Civita tensor,

ǫijk =







+1 cyclic permutations

−1 anti-cyclic permutations

0 otherwise

{σi, σj} = 2δijI2×2

⇒ σiσj = δijI2×2 + iǫijkσk

consider:

σiAiσjBj = AiBjδij + iǫijkσkAiBj

∴ (~σ. ~A)(~σ. ~B) = ~A. ~B + i~σ.( ~A× ~B)

if: ~A = − ~B = ~p

⇒ (~σ.~p)2 = ~p 2

if you were to start from 1
2 (~σ.~p)2 +V = E rather than p2

2m +V = E and include
the electromagnetic coupling you would get the correct gyro-magnetic ratio, g.

From the Dirac equation, g=2, experimentally this has been found as g =
2.00232.

7.2 The Dirac Equation

To avoid the problems of negative probabilities we interpret the E¡0 solutions
of the Klein-Gordon, Dirac proposed, an equation linear in ∂

∂t

HΨ = (~α.~p+ β.m)Ψ

where α and β are 4 × 4 matrices and the solutions Ψ are multi-component
objects.

The formation must be consistent with

E2Ψ = (p2 +m2)Ψ

if then: EΨ = (αipi + βm)Ψ

then: E2Ψ = (αipi + βm)(αjpj + βm)Ψ

= (αipi + βm)2Ψ

= (αiαjpipj + (αiβ + βαj)pim+ β2m2)Ψ

=

{(
αiαj + αjαi

2

)

pipj + (αiβ + βαj)pjm+ β2m2

}

Ψ

⇒ αiαj + αjαi = 2δij

αiβ + βαj = 0

β2 = I
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7.2.1 Properties of α and β

• α and β are Hermitian α = α† β = β†

• α2 = I β2 = I

• α and β are traceless

•

αiβ + βαi = 0

multiply from right by β:

0 = αiβ
2 + βαiβ

∴ αiI = −βαiβ

Tr(αi) = −Tr(βαiβ)

⇒ = −Tr(αiβ
2) may move elements of a trace cyclically

= −Tr(αi)

= 0

Using these properties we find common choices for αi and β are

αi =

(
0 σi

σi 0

)

β =

(
I 0
0 −I

)

where σi and I are 2× 2 matrices

7.3 The covariant form of the Dirac Equation

We have:

EΨ = (αipi + βm)Ψ

E → i
∂

∂t
p→ −i∇

i
∂Ψ

∂t
= −iαi∇Ψ + βmΨ

iβ
∂Ψ

∂t
= −iβαi∇Ψ + β2mΨ β from right

let β = γ0 and βαi = γi

iγ0 ∂Ψ

∂t
+ iγi∇Ψ

︸ ︷︷ ︸

−mΨ = 0

(iγµ∂µ −m)Ψ = 0
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where:

γµ = (γ0, γi)

∂µ = (
∂

∂t
,∇)

7.3.1 Properties of γ

• γ0 is Hermitian

• γi is anti-Hermitian i.e. (γi)† = −γi

γi = βαi

(γi)† = (βαi)†

= (αi)†β†

= αiβ

= −βαi

= −γi

• (γ0)2 = I since β2 = I

• (γi)2 = −I since:

(γi)2 = γiγi

= βαiβαi

= −βαiαiβ

= −ββ
= −I

7.4 The adjoint Dirac Equation and conserved
current

As we are now dealing with a matrix equation we have to consider the Hermitian,
rather than the complex, conjugate in order to find currents.

(iγµ∂µ −m)Ψ = 0 (1)

(iγ0 ∂

∂t
+ iγi∇−m)Ψ = 0
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Take the Hermitian:

(iγ0 ∂

∂t
+ iγi ∂

∂xi
−m)†Ψ† = 0

−i∂Ψ†

∂t
(γ0)† − i∂Ψ†

∂xi
(γi)† −mΨ† = 0

−i∂Ψ†

∂t
γ0 − i∂Ψ†

∂xi
(−γi)−mΨ† = 0

← ×γ0

−i∂Ψ†

∂t
γ0γ0 + i

∂Ψ†

∂xi
γiγ0 −mΨ†γ0 = 0

remember: γiγ0 = −γ0γi

⇒ −i∂Ψ†

∂t
γ0γ0 − i∂Ψ†

∂xi
γ0γi −mΨ†γ0 = 0

now define the adjoint as:

Ψ = Ψ†γ0

⇒ −i∂Ψ

∂t
γ0 − i ∂Ψ

∂xi
γi −mΨ = 0

⇒ i∂µΨγµ +mΨ = 0 (2)

derive the continuity equation, ∂µj
µ = 0:

Ψiγµ∂µΨ−ΨmΨ = 0 Ψ× (1)

⇒ i∂µΨγµΨ +mΨΨ = 0 (2)×Ψ

iΨγµ∂µΨ + i∂µΨγµΨ = 0 Ψ× (1) + (2)×Ψ

⇒ ∂µ(ΨγµΨ) = 0

so we associate jµ = ΨγµΨ and satisfies the continuity equation. We identify
jµ with the probability and flux densities, ρ and ~j.

The probability density is:

ρ = Ψγ0Ψ

= Ψ†Ψ

= |Ψ|2

i.e. positive and definite as required.
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7.5 Free-particle solution to the Dirac Equation

Look for solutions of the form Ψ = U(p)e−ip.x and substitute into the Dirac
Equation:

(iγµ∂µ −m)Ψ = 0

(iγµ∂µ −m)U(p)e−ip.x = 0

(iγµ(−ipµ)−m)U(p)e−ip.x = 0

(γµpµ −m)U(p) = 0

(p/−m)U(p) = 0 Dirac slash notation

to get a solution for U(P ) we write the above in terms of β and α matrices

(γ0E − γi~pi −m)U(p) = 0

((γ0)2E − γ0γi~pi − γ0m)U(p) = 0 γ0 × |
(E − αipi − βm)U(p) = 0

for particles at rest set pi = 0

(IE − βm)U(p) = 0

m

(
I 0
0 −I

)

U(p) =

(
I 0
0 I

)

EU(p)

solutions exist if:
∣
∣
∣
∣

(m− E)I 0
0 −(m+ E)I

∣
∣
∣
∣
= 0

⇒ (m− E)(m− E)(m+ E)(m+ E) = 0

so there are 4 eigenvalues:E = m,m,−m,−m i.e. negative energy solutions
remain. We now associate U1 and U2 with the E = m solutions while u3 and
u4 are associated with the E = −m solutions.

For the case p 6= 0 find the solution from

(α.p+ βm)U = EU
[(

0 σ
σ 0

)

.p+m

(
I 0
0 −I

)](
UA

UB

)

= E

(
UA

UB

)

⇒ σ.pUB +mUA = EUA

σ.pUA −mUB = EUB

⇒ UA =
σ.p

E −mUB

UB =
σ.p

E +m
UA
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For E>0:

UB =
σ.p

E +m
UA as at rest E = m

UA =

(
1
0

)

or

(
0
1

)

⇒ U1 = N







1
0

σ.p
E+m

0







and U2 = N







0
1
0

σ.p
E+m







Where N is a renormalisation constant. Now for E<0:

UA =
σ.p

E −mUB

=
σ.p

−|E| −mUB

=
−σ.p
|E|+m

UB

⇒ U3 = N







−σ.p
|E|+m

0
1
0







and U4 = N







0
−σ.p

|E|+m

0
1







In summary all the above comes from (p/−m)U = 0 and we now associate the
negative energy solutions, U3 and U4 such that they describe positron solutions
propagating backwards in time with a propagation factor: eipx compared to
e−ipx for electrons.

U (3,4)(−p)e−i(−p)x ≡ V (2,1)(p)eipx

V2 = N







σ.p
E+m

0
1
0







and V1 = N







0
σ.p

E+m

0
1







Considering the original equation with an electron of energy, -E, and momentum,
-p, we have:

(−�p−m)U(−p) = 0

(�p+m)V (p) = 0
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7.5.1 Orthonormality of the spinors

Ψ1 = N1







1
0

σ.p
E+m

0






e−ip.x and Ψ2 = N2







0
1
0

σ.p
E+m






e−ip.x

For Orthonormality:
∫

Ψ†
1Ψ2d

3x = 0

We normalise to 2E particles in a volume, V:
∫

Ψ†
1Ψ1d

3x = 2E

∫

N∗N

{

1 +

(
σ.p

E +m

)2
}

d3x = 2E (σ.p)† = (σ.p)

∫

N∗N

{

1 +

(
p 2

(E +m)2

)2
}

d3x = 2E

∫

N∗N

{
(E +m)2 + (E +m)(E −m)

(E +m)2

}

d3x = 2E

∫

N∗N

{
E +m+ E −m

(E +m)

}

d3x = 2E

∫

N∗N

{
2E

(E +m)

}

d3x = 2E

⇒ N∗N

E +m
V = 1

⇒ N =

√

E +m

V

7.5.2 Spin

Neither the angular momentum nor the spin angular momentum commune with
the Dirac Hamiltonian. We seek an operator that which commutes, whose
eigenvalues can be taken to distinguish the states.

Using the Hermitian form of the Dirac Equation:

H

(
UA

UB

)

= (α.p+ βm)

(
UA

UB

)

=

(
mI σ.pI
σ.pI −mI

)(
UA

UB

)

= E

(
UA

UB

)
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By inspection H commutes with σ.pI check:

[H,σ.pI] = 0
(
mI σ.pI
σ.pI −mI

)(
σ.pI 0
0 σ.pI

)

−
(
σ.pI 0
0 σ.pI

)(
mI σ.pI
σ.pI −mI

)

= 0

(
mσ.pI (σ.p)2I

(σ.p)2I −mσ.pI

)

−
(
mσ.pI (σ.p)2I

(σ.p)2I −mσ.pI

)

= 0

We define the helicity operator as:

1

2
~σ.~̂p =

1

2

~σ.~p

|~p|

i.e. the helicity is the projection of spin in the direction of motion. Its eigenval-
ues are:

+
1

2
⇒→ positive helicity

−1

2
⇐→ negative helicity

for an arbitrary vector, ~p, angle θ from z-axis and φ in the x-y plane (measured
from the x-axis).

~̂p = sin θ cosφ~̂i+ sin θ sinφ ~̂j + cos θ
~̂
k

⇒ ~σ.~̂p =

(
0 1
1 0

)

sin θ cosφ+

(
0 −i
i 0

)

sin θ sinφ+

(
1 0
0 −1

)

cos θ

⇒ 1

2
~σ.~̂p

(
UA

UB

)

=
1

2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)(
UA

UB

)

so the eigen values equation is:

1

2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)(
UA

UB

)

= λ

(
UA

UB

)

∣
∣
∣
∣

cos θ − 2λ sin θe−iφ

sin θeiφ − cos θ − 2λ

∣
∣
∣
∣
= 0

−(cos θ − 2λ)(cos θ + 2λ)− sin2 θ = 0

⇒ −1 + 4λ2 = 0

⇒ λ = ±1

2

7.5.3 γ5 Matrix

This matrix is introduced to simplify notation:

γ5 = iγ0γ1γ2γ3
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it can be shown that:

(γ5)† = γ5

(γ5)2 = I

In Dirac-Pauli representation

γ5 =

(
0 I

I 0

)

Consider the effects of γ5 on the Dirac Equation solutions:

Let χ =

(
1
0

)

⇒ γ5

(
UA

UB

)

=

(
0 I

I 0

)(
χ

σ.p
E+mχ

)

=

( σ.p
E+mχ

χ

)

=

( σ.p
2|p|χ

χ

)

in the massless limit E → |p|

=

(
σ.p̂χ
χ

)

=

(
σ.p̂χ

(σ.p̂)2χ

)

(σ.p̂)2 = 1 as p̂ is unitary

= σ.p̂

(
χ

σ.p̂χ

)

= σ.p̂

(
χ

σ.p
E+mχ

)

= σ.p̂

(
UA

UB

)

So in the massless limit (i.e. as E → ∞ or as m → 0) γ5 becomes the helicity
operator, we can now define two further operators:

PR =
1

2
(1 + γ5)

PL =
1

2
(1− γ5)

which are the right and left hand projection operators.

In the general (m 6= 0)case we call 1
2 (1 + γ5) the right-handed chirality

operator. If m is small it is essentially a right-handed helicity state but will also
contain a small left-handed component.
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7.6 Completeness relations

Completeness relationships are extensively used in the evaluation of Feynman
diagrams.

∑

S=1,2

US(P )US(P ) = A

row × column = scalar

column× row = matrix (outter product)

⇒ A =
∑

s=1,2

NN∗




χsχ

†
s −

(
σ.p

E+m

)†

χsχ
†
s

(
σ.p

E+m

)

χsχ
†
s

(
−(E2−m2)
(E+m)2

)

χsχ
†
s





∑

s=1,2

χsχ
†
s =

(
1
0

)

(1, 0) +

(
0
1

)

(0, 1)

=

(
1 0
0 1

)

= I

⇒
∑

S=1,2

US(P )US(P ) =

(

I
−σ.p
E+m I

−σ.p
E+m I

−(E2−m2)
(E+m)2 I

)

.(E +m) NB: NN∗ = (E +m)

=

(
(E +m)I −σ.pI
−σ.pI (m− E)I

)

(A)

Now:

(�P +m) = γµPµ +mI

= γ0E − γi~pi +mI

=

(
EI 0
0 −EI

)

−
(

0 ~σi

~σi 0

)

~pi +

(
mI 0
0 mI

)

=

(
(E +m)I −σ.pI
σ.pI (m− E)I

)

(B)

We can see from this that A = B

⇒
∑

S=1,2

US(P )US(P ) = (�P +m)

and similarly we can see that:

∑

S=1,2

VS(P )V S(P ) = (�P −m)
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Chapter 8

Electron-Muon Scattering

We will now calculate a real cross-section, i.e. with no constructs such as spin-0,
but rather something which could be compared to experiment. We will start
with e−µ+ scattering as this can be simply modified to also calculate electron-
quark scattering and e+e− annihilation to a µ+µ− pair.

8.1 An electron in an electromagnetic field

The Dirac Equation (~α~p+ βm)Ψ = EΨ. Now substitute pµ → pµ + eAµ

∴ E → E + eV

pi → pi + eAi

(~αi~pi + βm+ e{αA− V I})Ψ = EΨ

where: e{αA− V I} = Dirac potential, VDir

67



68 CHAPTER 8. ELECTRON-MUON SCATTERING

The amplitude for the scattering of an electron from a state Ψi to Ψf

Tfi = −i
∫

d4xΨ†
fVdirΨi

= −ie
∫

d4xΨ†
f{−V I + ~α. ~A}Ψi

= −ie
∫

d4xΨ†
f{−A0I + ~α. ~A}Ψi

= −ie
∫

d4xΨ†
fγ

0γ0{−A0I + ~α. ~A}Ψi

= −ie
∫

d4xΨ
†

f{−γ0A0I + γkAk}Ψi γ0 = β; βα = γk

=�−ie
∫

d4xΨ
†

fγ
µAµΨi γµAµ = (γ0A0;−γkAk)

= −i
∫

jµ
fiAµd

4x

where: jµ
fi = −eUfγ

µUie
i(pf−pi).x

jµ
fi is the electromagnetic transition current between states i and f . Recall for

a spin-less electron that jµ
fi was:

jµ
fi = e(pf + pi)

µei(pf−pi)x spin-less

jµ
fi is the current at each vertex so in electron-muon scattering we have two

vertices, at vertex 1 is the electron and vertex 2 the muon (8.1).This gives the
transition amplitude as:

Figure 8.1: Schematic of electron muon scattering
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Tfi = −i
∫

j1µ
−1

q2
jµ
2 d

4x

= +ie

∫

d4xU(k′)e+ik′xγµU(k)e−ikx−1

q2
U(p′)e+ip′xγµU(p)e−ipx(−e)

=
ie2

q2

∫

d4xei(k′+p′−k−p).x{u(k′)γµu(k)}{u(p′)γµu(p)}

As before for |Tfi|2 one exponential term goes into the phases space factor
(number of final states) and the second becomes V t so we just need@

|Tfi|2 =
ie4

q4
{u(k′)γµu(k)}{u(p′)γµu(p)} × {u(k′)γνu(k)}†{u(p′)γνu(p)}†

Considering the final term:

{ u(p′)γνu(p) }† = { u†(p′)γ0γνu(p) }†

= u†(p)(γν)†(γ0)†u(p′)

= u†(p)γ0γνu(p′) as:







(γν)† = −γµ

(γ0)† = γ0

γνγ0 = −γ0γν

⇒ (γν)†(γ0)† = γ0γν

= u(p)γνu(p′)

Similarly for the third term:

{u(k′)γνu(k)}† = u(k)γνu(k
′)

⇒ |Tfi|2 =
ie4

q4
{ u(k′)γµu(k) } { u(p′)γµu(p) } × { u(k)γνu(k

′) } { u(p)γνu(p′) }

This is often written as:

|Tfi|2 =
e4

q4
eLµν

µLµν

where eL and µL are tensors representing the electron and muon respectively.
We now need the e−µ− scattering transition amplitude summed over all the

initial states, summed over all the final states and averaged over initial spin
states:

eLµν =
1

2

∑

s

∑

s′

Us′(k′)γµUs(k) Us(k)γνUs′(k′)

Where the factor 1
2 is the spin average, s denotes the initial states and s′ denotes

final states.
We can re-write this explicitly in terms of matrix elements: α, β, γ and δ.

eLµν =
1

2

∑

s

∑

s′

Us′(k′)α γ
αβ
µ Us(k)β Us(k)γ γ

γδ
ν Us′(k′)δ
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we can make cyclic changes to the order so group U and U terms together, i.e.
move the final term Us′(k′) next to the first Us′(k′):

eLµν =
1

2

∑

s

∑

s′

Us′(k′)δ Us′(k′)α
︸ ︷︷ ︸

γαβ
µ Us(k)β Us(k)γ

︸ ︷︷ ︸
γγδ

ν

(��k
′ +m)δα (�k +m)βγ

so eLµν is reduced to the trace of four 4× 4 matrices, similarly for µLµν .
This gives us the final results for the L tensors:

eLµν =
1

2
Tr
{

(��k
′ +me)γµ(�k +me)γν

}

µLµν =
1

2
Tr
{
(��p

′ +mµ)γµ(�p+mµ)γν
}



Chapter 9

Trace Theorems

1. Tr(I4×4) = 4 generally Tr(In×n) = n

2.

Tr(�a �b) = Tr(�b �a)

=
1

2
Tr(�a �b+ �b �a)

=
1

2
Tr(γµaµγ

νbν + γνaνγ
µbµ)

=
1

2
Tr(γµγνaµbν + γνγµaνbµ)

We know: 2gµν
I = γµγν + γνγµ

⇒ Tr(�a �b) =
1

2
a.b.2Tr(I)

= 4a.b

3.

Tr(�a �b �c �d) = Tr(γµγνγδγσaµbνcδdσ)

now: Tr(γµγνγδγσ) = −Tr(γνγµγδγσ) + Tr(2gµνγ
δγσ)

= Tr(γνγδγµγσ)− Tr(2gµδγ
νγσ) + Tr(2gµνγ

δγσ)

= −Tr(γνγδγσγµ) + Tr(2gµσγ
νγδ)− Tr(2gµδγ

νγσ) + Tr(2gµνγ
δγσ)

= −Tr(γµγνγδγσ) + Tr(2gµσγ
νγδ)− Tr(2gµδγ

νγσ) + Tr(2gµνγ
δγσ) (cyclic permutation)

⇒ Tr(γµγνγδγσ) = Tr(gµσγ
νγδ)− Tr(gµδγ

νγσ) + Tr(gµνγ
δγσ)

= 4(gµσgνδ − gµδgνσ + gµνgδσ)

⇒ Tr(�a �b �c �d) = 4 {(a.d)(b.c)− (a.c)(b.d) + (a.b)(c.d)}
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9.1 Other Identities

We will use these to calculate the cross-sections for compton scattering (among
other things)

1.

γµγ
νγµ = −γµγ

µγν + gνµγµ

= −(I)γν + 2γν

= −4γν + 2γν

= −2γν

or: γµ�aγ
µ = −2�a

2.

γµγ
νγσγµ = −γνγµγ

σγµ + 2gµνγ
σγµ

= 2γνγσ + 2γσγν

= 4gσν

or: γµ�a �bγ
µ = 4a.b

3.

γµ�a �b �cγ
µ = γµ�a �bγ

νγµcν

= −γµ�a �bγ
µγνcν + 2γµ�a �bg

νµcν

= −4a.b�c+ 2�c �a �b

= −4a.b�c+ 2�cγ
αγβaαbβ

= −4a.b�c+ 2�cγ
βγαaαbβ + 2�c2gαβaαbβ

= −4a.b�c− 2�cγ
βγαaαbβ + 4a.b�c

= −2�cγ
βγαaαbβ

= −2�c �b �a

9.2 Trace Theorems with γ5

1.

Tr(γ5γµ) = −Tr(γµγ5) (inverse a trace)

= −Tr(γ5γµ) (commutation relation)
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2.

Tr(γ5γµγν) = Tr(γ5(γµ)2) (case: µ = ν)

= Tr(γ5
I)

= Tr

[
0 I

I 0

]

= 0

Tr(γ5γµγν) = iTr(γ0γ1γ2γ3

←−−γ
1γ2) (case: µ = 1 and ν = 2)

= iTr(γ0(γ1)2γ2γ3

←−γ
2) (γ1γµ = −γµγ1)

= iTr(−γ0
I(γ2)2γ3)

= −iTr(γ0γ3)

And: Tr(γ0γ3 + γ3γ0) = 2Tr(go3I)

= 0

⇒ Tr(γ0γ3) = 0

⇒ Tr(γ5γ1γ2) = 0

⇒ Tr(γ5γµγν) = 0

This final assumption can be made because no matter which substitutions
for µ and ν myou make you will always end up with an off-diagonal matrix
which will always have a trace of 0.

3.

Tr(γ5γµγνγδ) = Tr(iγ0γ1γ2γ3γµγνγδ)

= 0

As the trace of an odd number of gamma matrices is 0. Consider:

Tr(��a1��a2 . . .��an) = Tr(��a1��a2 . . .��an←−−−−−−−γ
5γ5) as: (γ5)2 = I

= (−1)nTr(γ5
��a1��a2 . . .��an←−−−−−−−γ

5) (move γ5 n places left)

= (−1)nTr(γ5γ5
��a1��a2 . . .��an) (cyclic permutations)

= (−1)nTr(��a1��a2 . . .��an)

⇒ for odd n Tr(��a1��a2 . . .��an) = −Tr(��a1��a2 . . .��an)

= 0
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4.

Tr(γ5γµγνγδγσ) =

consider:

Tr(γ5γ0γ1γ2γ3) =
−1

i
Tr((γ5)2)

= 4i

In general:

Tr(γ5γµγνγδγσ) = 4ǫµνδσ

Where: ǫ =







+1 even permutations

−1 odd permutations

0 otherwise



Chapter 10

Return to Transition
Amplitude for e−µ−

scattering

Recall that:

|Tfi|2 =
e4

q4

{
1

2
Tr[ (��K

′ +me)γµ(��K +me)γν ]
1

2
Tr[ (��P ′ +mµ)γµ(�P +mµ)γν ]

}

The only non-zero traces are those involving even numbers of the γ matricies
eg. Tr[��K ′γµmγν ] = 0. (m = me and M = mµ)

|Tfi|2 =
e4

4q4
{
Tr[γδγµγσγν(K ′)δKσ + γµγνm

2] Tr[γδγµγσγν(P ′)δPσ + γµγνM2]
}

=
e4

4q4
{
4[ (gδνgµσ − gδσgµν + gδµgσν)(K ′)δKσ + gµνm

2 ]

× 4[ (gδνgµσ − gδσgµν + gδµgσν)(P ′)δPσ + gµνM2 ]
}

=
8e4

q4
{
(K ′.P ′)(K.P ) + (K ′.P )(K.P ′)−m2(P ′.P )−M2(K ′.K) + 2m2M2

}

In the relativistic limit m2 ande M2 terms can be neglected.

|Tfi|2 =
8e4

q4
{ (K ′.P ′)(K.P ) + (K ′.P )(K.P ′) }
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expressing in terms of the Mandelstam variabls:

s = (K + P )2

≈ 2K.P

≈ 2K ′.P ′

t = (K −K ′)2

= q2

≈ −K ′.K

≈ −P ′.P

u(K − P ′)2

≈ −2K.P ′

≈ −2K ′.P

⇒ |Tfi|2 =
8e4

t2

{
s

2
· s
2

+
−u
2
· −u

2

}

= 2e4(
s2 + u2

t2
)

⇒ dσ

dΩ
=

1

64π2s
· 2e4(s

2 + u2

t2
)

10.1 Cross-section for e+e− → µ+µ−

This cross section can be easily derived from e−µ− → e−µ− to do this compare
the Feynman diagrams (10.1):

Figure 10.1: Transfortation of s-channel electron muon scattering to t-channel
electron anihilation producing two muons



10.2. THE TOTAL E−E+ → µ−µ+ CROSS SECTION 77

Comparing the verticies we can see that:

(I)k → k′ for eµ→ eµ

k → −p for ee→ µµ

(II)p→ p′ for eµ→ eµ

− k′ → p′ for ee→ µµ

between the two processes exchange k′ for −p and p for −k′. This changes
|Tfi|2:

|Tfi|2eµ→eµ =
8e4

4(K.K ′)2
{ (K ′.P ′)(K.P ) + (K ′.P )(K.P ′) }

|Tfi|2ee→µµ =
8e4

4(K.P )2
{ ((−P ).P ′)(K.(−K ′)) + ((−P ).−K ′)(K.P ′) }

and the Mandelstam variables stay the same

⇒ |Tfi|2ee→µµ =
8e4

4( s
2 )2

{ −t
2

−t
2

+
−u
2

−u
2

}

= 2e4
{
t2 + u2

s2

}

⇒ dσ

dΩ
=

1

64π2s
· 2e4

{
t2 + u2

s2

}

This is the same as for e−µ− → e−µ− other than the exchange of s and t
Mandelstam variabls

10.2 The total e−e+ → µ−µ+ cross section

We want to integrate over Ω and evaluate s, t and u in terms of energy and
scattering angle (10.2)

s ≈ 2k.p

= 4Ee−Ee+

t2 ≈ 4(k.k′)2

= 4(Ee−Eµ+ − pe−pµ+)2

= 4E2
e−E2

µ+(1− cos θ)2

u2 ≈ 4(k.p′)2

= 4E2
e−E2

µ−(1 + cos θ)2
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Figure 10.2: Schematic of electron annhilation going to muons

⇒ dσ

dΩ
=

1

64π2s
· 2e4

{

4E2
e−E2

µ+(1− cos θ)2 + 4E2
e−E2

µ−(1 + cos θ)2

16Ee−Ee+

}

because of working in the centre of mass frame at the massless limit:

Ee− = Ee+ = Eµ− = Eµ−

⇒ dσ

dΩ
=

1

64π2s
· e4
{

(1− cos θ)2 + (1 + cos θ)2

2

}

=
1

64π2s
· e4(1 + cos2 θ)

∴ σ =

∫ π

0

α2

4s
(1 + cos2 θ) · 2π sin θdθ (where α =

e2

4π
)

=
2πα2

4s

[

− cos θ − 1

3
cos3 θ

]π

0

=
4πα2

3s

≈ 87

s

(nb)

(GeV2)

From this we can see that the anhilation process falls off as 1
s . Had it not been for

qq resonances, eg. Z0, high-energy particle physics would be very un-interesting.
Note: using a similar method we can find Bhathe scattering: e+e− → e+e−

in s and t channels.

10.3 The ratio, R, at e+e− colliders

R =
σ(e+ e− → hadrons)

σ(e+ e− → µ+µ−)
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In this ratio muons are looked for rather than electrons as muons are much
easier to detect.

At low energies electrons anhilate into systems containing u and d quarks
which appear as qq pairs, these pairs subsequently hadronise. They can anhilate
through the virtual photon to make qq resonances egρ. As the energy increase
qq pairs of s, c, b and eventually t quarks can be produced. What is the
contribution to R of one generation of qq pairs?

σ(e+ e− → qq, q′q′)

σ(e+ e− → µ+µ−)
=

[
( 2
3 )2 + (−1

3 )2
]
e23

e2

=
15

9

=
5

3
per generation

where q is a u quark and q′ is a d quark, the factor of 3 is due to colour charge
while the e’s and fractions are the relavent electromagnetic charges.

By the time we have
√
s = 2mb, R should be 11

3 = 3.66. The actual value

at 2mb is in the region 3.84̃ but this is to be expected as our calculated value of
R is a very simple electromagnetic calculation.

This ratio shows resonces at ρ = (770 MeV), J/Ψ = (3.1 GeV) γ =
(10.6 GeV) the bb experiments work at this energy at which we can measure R.

Although the simple EM model is a reasonable description of the data it
can be improved. The actual value of R is higher due to gluon radiation in the
final state (10.3). These and higher order (O(αs)) corrections to R produce the

Figure 10.3: radiation of gluons from final state qq pair

difference between experiment and theory. e.g. there is a Z-mass correction.
There is an analogous ration for partial decay widths of the Z0

RZ =
Γ(e+ e− → hadrons)

Γ(e+ e− → µ+µ−)

to lowest order RZ =20.09. However the measured value is RZ(m) = 20.79±0.04
i.e about 3.4% higher but clearly many (experimental) standard deviations away.
As this entirely due to higher order QCD corrections it is used as a way of
measuring αs.
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10.4 Fermion processes

10.4.1 Møller Scattering

Figure 10.4: Moller scattering of electrons: t and u channel

Because processes like Moller scattering have identical particles it is impos-
sible to tell from which vertex any single final state electron originated.

σ ∼ s2 + u2

t2
+

2s2

tu
+
s2 + t2

u2
(where:

2s2

tu
is a cross term)

|Tfi|2ee→ee =
∣
∣
∣T t−channel

fi + Tu−channel
fi

∣
∣
∣

2

10.4.2 Bhatha Scattering

Figure 10.5: Bhatha scattering: s and t channels of e+e− → e+e−
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σ ∼ s2 + u2

t2
+

2u2

su
+
t2 + u2

s2

10.4.3 e−µ− → e−µ−

Figure 10.6: t-channel electron-muon scattering

σ ∼ s2 + u2

t2

10.4.4 e+e− → µ+µ−

Figure 10.7: s-channel electron anhilition to muons

σ ∼ t2 + u2

s2
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Chapter 11

Helicity conservation at
high energies

We can gain further insight into the cross-section calculations and their angular
distributions by looking at the helicity of particles.

The states are UL = 1
2 (1− γ5)U and UR = 1

2 (1 + γ5)U consider

UL = U†
Lγ

0

=
1

2
U†(1− γ5)†γ0

=
1

2
U†γ0(1 + γ5)

=
1

2
U(1 + γ5)

At high energies, E≫m, the electromagnetic interaction conseres helicity

Consider the electromagnetic current: UγµU

UγµU = (UL + UR)γµ(UL + UR)

ULγ
µUR =

1

2
U(1 + γ5)γµ 1

2
(1 + γ5)U

=
1

4
Uγµ(1− γ5)(1 + γ5)U

=
1

4
Uγµ(1− (γ5)2)U

= 0 ((γ5)2 = I)

i.e. there is no contribution from cross products.

Helicity conservation requires that the incoming e− and e+ have opposite
helicities as do the outgoing muons. In CMS e−Re

+
L → µ−

Lµ
+
R

83



84 CHAPTER 11. HELICITY CONSERVATION AT HIGH ENERGIES

The reaction preceeds via a photon of spin 1 so the amplitudes are propor-
tional to the rotation matrices.

dj
λλprime(θ) ≡ 〈jλprime|e−iθjy |jλ〉

where j is the spin of the propagator, λ and λ′ are the spins of the particles and
where y is perpendiculat to the reaction plane and the matricies can be worked
out in angular momentum theory.

d1
11(θ) = d1

−1−1(θ)

=
1

2
(1 + cos θ)

∼ −u
s

d1
1−1(θ) = d1

−11(θ)

=
1

2
(1− cos θ)

∼ − t
s

square and add the above gets:

dσ

dΩ
∼ u2 + t2

s2

2 contributions depend on whether the spins ‘swap’.
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Massless, spin-1 particle:
The photon

Maxwell’s equations and definition of the classical potentials:

1. ~∇. ~E = ρ

2. ~∇. ~B = 0

3. ~∇× ~E = −∂ ~B
∂t

4. ~∇× ~H = ~j+ ∂ ~D
∂t

~D and ~H are used for situations where there is polarisation,
the further constants that they use are removed due to natural units

12.1 Potentials

~B = ~∇× ~A

~∇× ~E = − ∂

∂t
(~∇× ~A)

= −~∇× ∂ ~A

∂t

⇒ 0 = ~∇× ( ~E +
∂ ~A

∂t
)
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This has as a solution:

~E +
∂ ~A

∂t
= −∇φ

ρ = −∇2φ− ∂

∂t
~∇. ~A (using Maxwell 1)

−ρ = ∇2φ− ∂2φ

∂t2
+
∂2φ

∂t2
+
∂

∂t
~∇. ~A

~∇× ~H = ~j +
∂ ~D

∂t
(using Maxwell 4)

~∇× ~H = ~j +
∂ ~E

∂t
(0 polarisation)

~∇× (~∇× ~A) = ~j +
∂ ~E

∂t

~∇× (~∇× ~A) = ~j + (−∂
2 ~A

∂t2
−∇∂φ

∂t
)

∇(~∇. ~A)−∇2 ~A = ~j + (−∂
2 ~A

∂t2
−∇∂φ

∂t
)

−~j = ∇2 ~A− ∂2 ~A

∂t2
−∇(~∇. ~A)−∇∂φ

∂t

⇒ jµ = �2 ~Aµ − ∂µ∂νA
ν

Where:

�2 = (
∂2

∂t2
,−∇2)

Aµ = (φ, ~A)

jµ = (ρ,~j)

The electromagnetic field is described by the 4-potential Aµ which satisfies the
above equations.

For a free electromagnetic field jµ = 0



Chapter 13

What are the polarisation
states of a free photon?

Since we have a 4-potential, we expect to also have 4 polarisation states. How
do these reduce to the well known 2 polarisation states of a free photon? the
four states could be:

(time like) = |1, 0, 0, 0〉

(space like) =







|0, 1, 0, 0〉 (x-polarisation)

|0, 0, 1, 0〉 (y-polarisation)

|0, 0, 0, 1〉 (z-polarisation)

For virtual photons all of the above polarisation states exist, conversely for real
photons only the transverse (~x and ~y) states exist. Firstly, apply the Lorenz
(not Lorentz) condition:

∂µA
µ = 0

gives: �2Aµ = jµ

This makes the time like components depend on the space like components. For
a free photon jµ = 0, so:

�2Aµ = 0

And the solutions are plane waves Aµ = ǫµi e
−iq.x where ǫi are the polarisation

states. Apply the Lorenz condition:

∂µA
µ = ∂µǫ

µ
i e

−iqµxµ

⇒ −iqµǫµi e−iqµxµ

= 0

so the two Lorenz conditions reduce to:

qµǫ
µ
i = 0
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We now apply a gauge transformation. Recall that ~B and ~E in classical electro-
magnetism come from the field tensor, Fµν = ∂µAν − ∂νAµ. Fµν is unchanged
and thus ~E and ~B are unchanged under the gauge transform:

A′µ → Aµ + ∂µΛ

where Γ is a scalar field which has to satisfy the Lorenz condition, let Λ =
iαe−iqµxµ .

Is ∂µ∂
µΛ = 0? If so then it will satisfy the Lorenz condition:

∂µ∂
µΛ = (−iqµ)(−iqµ)iαe−iqµxµ

= −iαq2e−iqµxµ

As charge of a real photon = 0⇒ q2 = 0 and therefore ∂µ∂
µΛ = 0.

Substitute Λ and Aµ into the gauge transform

Aµ → ǫµe−iq.x + (−iqµ)iαe−iq.x

so the gauge transform simplifies to

ǫ′µ = ǫµ + αqµ

so two polarisation vectors (ǫµ, ǫ
′
µ) which differ by a multiple of qµ, describe

the same photon. This means we can set the time-like components to be 0.
This means that the Lorenz condition reduces to ~ǫ.~q = 0. Therefore only two
independent polarisation vectors exist and they must be perpendicular to each
other.

So the states are:

~ǫ1 = (1, 0, 0)

~ǫs = (0, 1, 0)

There are also the circular polarisation vectors:

~ǫR = − 1√
2
(ǫ1 + iǫ2)

~ǫL = − 1√
2
(ǫ1 − iǫ2)

13.1 Virtual photons and the photon propaga-
tor

For virtual photons by imposing the Lorenz condition we have:

�2Aµ = jµ

= gµνjν
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by inspection we have seen that:

Aµ =
−gµνjν
q2

we now show that this solution can be derived from the propagator approach:

Aµ(x′) =

∫

G(x′, x)jµ(x)d4x (1)

Where we also know that:

�2Aµ(x′) = jµ(x′)

=

∫

d4x δ4(x′ − x)jµ(x)

=

∫

d4x �2G(x′, x)jµ(x) (substitute 1)

comparing the last two equations:

�2G(x′, x) = δ4(x′ − x)
Translating into 4-momentum space via a Fourier transform:

1

(2π)4

∫

d4q (−iq)2G(q)e−iq(x′−x) =
1

(2π)4

∫

d4q e−iq(x′−x)

For this to be true we can see that G(q) = 1
q2 so:

Aµ(x) =
−jµ(x)

q2

=
−gµν

q2
jν(x)

When we did the propagator approach theory we found that the propagator in
4-momentum space is the inverse of the equation describing the free propagation
of virtual particles. So for the Klein-Gordon equation we obtain the propagator
by inverting it then multiplying by ‘i’:

i(�2 +m2)φ = −iV φ
so the Klein-Gordon propagator is:

1

i(�2 +m2)
=

−i
(�2 +m2)

�2 =
i∂µi∂

µ

i2

=
pµp

µ

−1

= −p2

∴ the propagator is =
i

P 2 −m2
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Consider the Dirac Equation:

(~α.~p+ βm+ e(~α. ~A−A0
I))Ψ = EΨ

convert into the covariant form by multiplying through by β

(βE − β~α.~p− β2m)Ψ = e(β ~α. ~A− βA0)Ψ

(γ0E − γkpk − Im)Ψ = −e(γ0A0 − γkAk)Ψ

−i(�p−m)Ψ = ie�AΨ

so the propagator is

1

i(�p−m)
=

⇒ i(�p+m)

(�p−m)(�p+m)
=
i
∑

s UU

p2 −m2

Where
∑

s UU is a sum over spin states of UU
This is the general form of a virtual propagator where the sum is over all

spin states of the electron or polarisation states of the photon.

13.2 The significance of longitudinal and time-
like photons

Consider a typical process involving photon exchange i.e. the photon propagator
is sandwiched between two currents

jA
µ (x)

(−gµν

q2

)

jB
ν (x) = jA

µ (x)

(
1

q2

)

jµ,B(x)

writing this out in full:

1

q2
(jA

1 (x)j1,B(x) + jA
2 (x)j2,B(x) + jA

3 (x)j3,B(x)− jA
0 (x)j0,B(x))

we know that the electromagnetic current is conserved:

∂µj
µ = 0

⇒ qµj
µ = 0

Since q is along the t or z axis then q1j
1 = q2j

2 = 0 so then apply the condition
qµj

µ = 0 to the time-like and longitudinal components

qµj
µ = q0j

0 − q3j3

= 0
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substitute this back into the amplitude:

1

q23q
2
q20 j

A
0 j

B
0 −

1

q2
jA
0 j

B
0 =

1

q2
jA
0 (x) jB

0 (x)

(
q20 − q23
q23

)

=
JA

0 (x)JB
o (x)

q23
(as q2 = q20 − q23)

which is Coloumb’s law in 3-momentum space.
The completion relation for real photons

(
1
0

)

(1 0) +

(
0
1

)

(0 1)

but for virtual photons we have gµν

gµν =







−1 0 0 0
0 ⌈1 0⌉ 0
0 ⌊0 1⌋ 0
0 0 0 1







Where the highlighted 2× 2 sub-matrix accounts for the real photons
So we can use the generalisation of virtual photons gµν for the completion

relation for real photons
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Chapter 14

Compton Scattering

There are 2 leading order Feynman Diagrams for γe→ γe This is closely related

Figure 14.1: Feynman diagram of Compton scattering

to γ emission from e+e− annihilation Calculating the cross section for Compton
scattering is also useful for deriving the cross-section or the QCD Compton
process: γq → qg (14.3)

Consider the Mandelstam variables:

s = (k + p)2

t = (k − k′)2

u = (k − p′)2
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Figure 14.2: t and u channel emission of photons from electrons

Figure 14.3: QCD Compton scattering

We are evaluating a double scattering:

=− i
∫

d4x1

∫

d4x2 φ
∗(2)V (2)G0(2; 1)V (1)φ(1)

=− i
∫

d4x1

∫

d4x2 (−e)U eip′x2 eik′x2 ǫ∗ν γ
ν

× 1

(2π)4
e−i(p+k)(x2−x1)

i(�p+ �k +m)

(p+ k)2 −m2

× (−e)ǫµ e−ikx1 γµ u e
−ipx1

In the above,
∫
d4x1e

−i(p+k)(x2−x1) gives δ4(x2 − x1) so we can put both x1

and x2 to x in the above. The the exponential in terms of the 4-momentum,
combined with the other from T †

fi gives V † and the number of states from factor
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Figure 14.4: Schematic of Compton scattering

as before so Tfi simplifies to:

Tfi = −iU(p′)(−e)ǫ∗νγν �p+ �k +m

(p+ k)2 −m2
(−e)ǫµγµU(p)

using the massless limit and tidying up:

Tfi =
−ie2
s

u(p′) ǫ∗νγ
ν (�p+ �k) ǫµγ

µ U(p)

⇒ |Tfi|2 =
e4

s2
[
ǫ∗ν′ǫµ′ ǫ

∗
µǫν × u(p)γµ′ (�p+ �k) γ

ν′u(p′)× u(p′)γν (�p+ �k) γ
µu(p)

]

This must be summed over the initial and final spin states and averaged over



96 CHAPTER 14. COMPTON SCATTERING

the initial spin states (= 1
4 ). For the sum over the photon polarisation states:

∑

ǫ∗µǫµ′ = −gµµ′

⇒ |Tfi|2 =
e4

4s2
gµµ′gνν′Tr

[
(�p

′ +m)γµ′(�p+ �k)γ
ν′(�p+m)γν(�p+ �k)γ

µ
]

=
e4

4s2
Tr
[
γµ

�p
′γµ(�p+ �k)γν�pγ

ν(�p+ �k)
]

(m→ 0)

where:

γµ
�p
′γµ = −2�p

′

γν�pγ
ν = −2�p

⇒ |Tfi|2 =
e4

4s2
Tr
[
(−2�p

′)(�p+ �k)(−2�p)(�p+ �k)
]

=
e4

s2
Tr
[

�p
′
�k�p�k
]

(p.p = me ≈ 0)

=
4e4

s2
[(p′.k)(p.k)− (p′.p)(k.k) + (p′.k)(k.p)] (using trace theorem)

=
4e4

s2
[(p′.k)(p.k) + (p′.k)(k.p)] (k.k = mγ = 0)

= 2e4
−u
s

to calculate the second (u-channel) diagram the same steps yield:

|Tfi|2u = 2e4
−s
u

But we still need Tfi(u) for the total cross section as we need to calculate the
interference term of Tfi(u) and Tfi(s):

Tfi(u) =
−ie2
u

U(p′)ǫµγ
µ(�p− �k)ǫνγ

νu(p)
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we are calculating:

|Tfi(u) + Tfi(s)|2 = |Tfi(u)|2 + |Tfi(s)|2 + T †
fi(u)Tfi(s) + T †

fi(s)Tfi(u)

T †
fi(u)Tfi(s) =

e2

u
ǫ∗ν′ǫ

∗
µ′ U(p)γν′ (�p− �k

′) γµ′U(p′)

× e2

s
ǫ∗νǫ

∗
µ U(p′)γν (�p+ �k) γ

µU(p)

=
e4

us
· 1
4
gνν′gµµ′

∑

spin

∑

U(p)γν′ (�p− �k)γ
µ′U(p′)

× U(p′)γν (�p+ �k)γ
µU(p)

=
e4

4us
Tr
[

�pγν(�p− �k
′)γµ��p

′γν(�p+ �k)γ
µ
]

=
e4

4us
Tr
[
−2(�p− �k

′)γν�p��p
′γν(�p+ �k)

]
(γµ�aγ

ν
�bγ

µ = −2�bγ
ν
�a)

= −2
e4

4us
Tr
[
(�p− �k

′)(4p.p′)(�p+ �k)
]

(γν�a�bγ
ν = 4a.b)

= −2
e4

4us
(4p.p′)Tr

[
(�p− �k

′)(�p+ �k)
]

= −2
e4

4us
(4p.p′)4 [(p.p) + (p.k)− (p.k′)− (k.k′)] (Tr[�a�b] = 4a.b)

= −2
e4

4us
4

(−t
2

)

4

[

0 +
s

2
− −u

2
− −t

2
)

]

(Substitute in Mandelstam variables)

= 2e4
t

us
[s+ u+ t]

for real photons s+ u+ t = 0 while for a virtual photon s+ u+ t 6= 0

For real photons s + u + t = 0 = 2(m2
e + m2

γ) ≈ 0, thus the interchange
terms for real photons scattering off nearly massless electrons do not contribute
to the cross-section however if the incoming photon is virtual s+u+ t = Q2 for
a photon of mass k2 = Q2 = −q2.

Therefore for a real photon:

dσ

dΩ
=

1

64π2s
· 2e4

{

−u
s
− s

u

}

=
α2

2s

{

−u
s
− s

u

}

and for a virtual photon:

dσ

dΩ
=

1

64π2s
· 2e4

{

−u
s
− s

u
+

2t

su
Q2

}

The cross-section and |Tfi|2 for e+e− → γγ are the same as the above except
u,s and t are rotated according to the diagrams (14.2)
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14.1 Compton scattering in the limit me → 0 and
s→∞

dσ

dΩ

∣
∣
∣
∣
s→∞

=
1

64π2s
· 2e4

{

− s
u

}

=
1

64π2
· 2e4

{

− 1

u

}

u ∼ −2p.k′

⇒ dσ

dΩ
=

1

64π2
· e

4

p.k′

p.k′ can be evaluated in the centre of mass frame using Ee = (p2
e +m2

e)
1
2 . First

the 4-vectors are dotted then a Taylor expansion is used:

p.k′ = peEγ(1 + cos θ +
m2

e

2p2
e

+ . . .)

where higher orders are neglected and treating all energies as equal

⇒ p2
e = peEγ

=
s

4

⇒ dσ

dΩ
=

1

64π2s
· e4

s

4
(1 + cos θ +

2m2
e

s
)

dσ =
α2

2
· 2π d(cos θ)

(1 + cos θ +
2m2

e

s
)

∴ σ =
2πα2

s

∫
dℓ

ℓ
(ℓ = (1 + cos θ +

2m2
e

s
))

=
2πα2

s
ln

[

1 + cos θ +
2m2

e

s

]0

π

=
2πα2

s

[

ln

(

2 +
2m2

e

s

)

− ln

(
2m2

e

s

)]

=
2πα2

s
ln

[
2s+ 2m2

e

s
· s

2m2
e

]

σ ≈ 2πα2

s
· ln
[
s

m2
e

]
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Electro-Weak

15.1 Massive spin-1 particles

For a massless photon the potential satisfies:

�2Aµ − ∂µ∂νA
ν = jµ

for a free particle, jµ = 0, and so

�2Aµ − ∂µ∂νA
ν = 0

(
∂2

∂t2
−∇2)Aµ − ∂µ∂νA

ν = 0

(−E2 + p2)Aµ − ∂µ∂νA
ν = 0

For massive particles, E2 = p2 +m2 or −E2 + p2 +m2 = 0 therefore a massive
particle satisfies:

�2Aµ +m2Aµ − ∂µ∂νA
ν = 0 (when real)

= jµ (when virtual)

This is the Proca equation, now differentiate with respect to ∂µ

∂µ∂
µ∂νA

ν +m2∂µA
µ − ∂µ∂

µ∂νA
ν = ∂µj

µ (in free field)

⇒ m2∂µA
µ = 0

but m2 6= 0

Therefore the free Proca field satisfies the Lorenz condition. The polarisation
vectors for free massive vector bosons are:

Aµ = ǫµe−ipµxµ

The field satisfies Lorenz condition as

∂µA
µ = 0

pµǫ
µ = 0
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in the rest frame pµ = (M, 0, 0, 0) and the polarisation states are:

ǫ1 = (0, 1, 0, 0)

ǫ2 = (0, 0, 1, 0)

ǫ3 = (0, 0, 0, 1)

What happens to the polarisation states when M is boosted along z? ǫ1 and ǫ2 re-
main unchanged and the particle is now described by the 4-vector: (E, 0, 0,−pz)
we determine ǫ3 from the Lorentz condition:

1

M
(pz, 0, 0, E)

︸ ︷︷ ︸

ǫ3

(E, 0, 0,−pz) = 0

The completeness relation for massive vector bosons:

∑

i

ǫiǫ
†
i =







0
1
0
0







(0, 1, 0, 0) +







0
0
1
0







(0, 0, 1, 0) +
1

M







pz

0
0
E







(pz, 0, 0, E)

=









p2
z

M2
0 0 0

0 1 0 0
0 0 1 0

0 0 0 E2

M2









= −gµν +
pνp

ν

M2

Checking the 00 term:

−g00 +
p0p

0

M2
= −1 +

E2

M2

=
E2 −M2

M2

=
p2

z

M2

and checking 33:

−g33 +
p3p

3

M2
= 1 +

p2
z

M2

=
p2

z +M2

M2

=
E2

M2

Can do similarly and write down polarisation vectors for virtual photons. Im-
posing the Lorentz condition removes their time-like polarisation states.
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For the virtual photon we have:

qµ = (v, 0, 0, pz)

q2 = v2 − p2
z

⇒ p2
z =

√

v2 +Q2

∴ qµ = (v, 0, 0,
√

v2 +Q2)

This gives the polarisation states of a virtual photon as:

ǫ1 = (0, 1, 0, 0)

ǫ2 = (0, 0, 1, 0)

ǫ3 =
1

Q2
(
√

v2 +Q2, 0, 0, v)

15.2 Massive virtual vector boson propagator

(�2 +m2)Aµ − ∂µ∂νA
ν = jµ

but we already know that:

m2∂νA
ν = ∂µj

µ

⇒ (�2 +m2)Aµ − ∂µ∂νj
ν

(
1

m2

)

= jµ

(�2 +m2)Aµ =

(
1

m2

)

∂µ∂νj
ν + gµνjν

= −
(

1

m2

)

∂µ∂νjν + gµνjν

=

(

gµν − ∂µ∂ν

m2

)

jν

so the propagator is

i

(

gµν − ∂µ∂ν

m2

)

−q2 +m2

Where the ‘i’ is included as convention. This is then the propagator for the
exchange of a massive spin-1 particle. If the particle is made in an annihilation
process it can decay and so the expression is modified.

The quantum state of a decaying particle in the rest frame must be of the
form

Ψ ∼ e−iMte−Γ t
2
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Such that ΨΨ∗ = e−iMteiMte−Γt

This suggests that for a decaying particle we should replace ‘−iM ’ with
‘−iM − Γ

2 ’ in the propagator

⇒ =

i

(

gµν − ∂µ∂ν

m2

)

−q2 +

(

−iM − Γ

2

)2

≈
i

(

gµν − ∂µ∂ν

m2

)

−q2 −M2 + iMΓ
(M > Γ)



Chapter 16

Charged current weak
interactions (CC)

Originally Fermi theory and his coupling constant, GF , from 1934 described
weak interactions. This developed from a point-like theory to being mediated
via a vector boson with coupling gw.

Consider the leptonic process:

µ+ → e+ + νe + ν̄µ

or νµ + e− → µ− + νe

Fermi would have considered these reactions to be point-like between two vector
currents (16.1) This theory was modeled on the electromagnetic interaction but

Figure 16.1: Point-like Fermi weak interaction

without the exchanged particle because the range of the weak force was known
to be small. Fermi suggested the following:

Tfi = G2
F Ūµ−γµUνµ

· Ūνe
γµUe−
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GF can be determined by experiment eg by measuring the decay width of a
muon or through some nuclear β decays.

Parity violation, discovered in 1956, meant that the weak current had to be
modified from vector to vector-axial current, this changes the transition to:

Tfi =
G2

F

2
Ūµ−γµ(1− γ5)Uνµ

· Ūνe
γµ(1− γ5)Ue−

Presently the known form of the charged current weak interaction is seen in So:

Figure 16.2: electron weak scattering e−νe → e−νe

Tfi =Ūµ−

γµ

2
(1− γ5)Uνµ

(
gw√

2

)

×
i

(

−gµν +
∂µ∂ν

m2

)

q2 −M2

×
(
gw√

2

)

Ūνe

γµ

2
(1− γ5)ue−

Comparing the old and the new descriptions for transmission (Tfi) with q ≪M :

⇒ G2
F

2
=

(
1

2
· gw√

2
· 1

M2
· gw√

2
· 1
2

)2

=
g4

w

64M4

⇒ GF√
2

=
g4

w

8M2

Now look at the chiral doublet :
(
νe

e−

)

L

=
1

2
(1− γ5)

(
νe

e−

)
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and the right handed singlet:

e−R =
1

2
(1 + γ5)e−

We are writing these down as it appears that in SU(2) ⊗ U(1), electroweak
unification, the fundamental entities are left handed chiral doublets and right
handed chiral singlets in weak isospin space. Now show that the CC weak
interaction is of the form:

ŪLγ
µUL

starting from:

Ūe
1

2
γµ(1− γ5)Uνe

now

(
1− γ5

2

)2

=
1

4
(1− 2γ5 + (γ5)2)

=
1

4
· 2(1− γ5) ((γ5)2 = I)

=
1

2
(1− γ5)

∴ Ūe
1

2
γµ(1− γ5)Uνe

= Ūeγ
µ

(
(1− γ5)

2

)2

Uνe

= Ūe
1

2
(1 + γ5)γµ 1

2
(1− γ5)Uνe

(γ5γµ = −γµγ5)

recall:

ŪeL ≡ Ūe

(
1 + γ5

2

)

UνeL ≡
(

1− γ5

2

)

Uνe

∴ Ūe
1

2
γµ(1− γ5)Uνe

= ŪeLγ
νUνeL

16.1 leptonic CC process

• Muon decay has been exhaustively studied theoretically and experimen-
tally since the late 1940s

• We are going to calculate the charged current weak contribution to neutrino-
electron scattering. With small modifications this will apply to neutrino-
quark scattering. The calculation will be done for Q2 ≪ M2

W i.e W-
propagator effects can be neglected. In fact ν experiments have not been
of high enough energy to see the W-propagator effects.
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• However W-propagator effects have been seen at the HERA through the
process e−q → νq′ (16.3)

Figure 16.3: Weak quark processes

There are also neutral current processes νe + e−
Z0

−−→ νe + e− (16.4)

Figure 16.4: Neutral current electron-neutrino scattering

In the point-like limit (Q2 ≪M2 16.5) This gives a transmission of:

Tfi =
GF√

2
Ū(P ′)γµ(1− γ5)U(K) · Ū(K ′)γµ(1− γ5)U(P )

GF√
2

As usual, we need Tfi.T
†
fi summed over all spin states and averages over initial

states.
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Figure 16.5: point-like schematic of electron-neutrino scattering

For the Hermitian conjugate consider one term:

=
[
Ū(K ′)γµ(1− γ5)U(P )

]†

= U†(P )(1− γ5)†γ†µγ
†
0U(K ′)

recall:

(γ0)† = γ0

(γ5)† = γ5

(γk)† = −γk

for γµ = γ0

= U†(P )

−1←−−−−−−
(1− γ5)†γ0←−−−−−−−−γ0U

−1

(K ′)

= Ū(P ) γ0
︸︷︷︸

γµ

(1− γ5)U(K ′)

for γµ = γi

= U†(P )

−1←−−−−−−
(1− γ5)†(−γi)←−−−−−−−−−−−−γ0U

−1 −1

(K ′)

= Ū(P ) γi
︸︷︷︸

γµ

(1− γ5)U(K ′)

therefore the Hermitian has the same order of γµ(1− γ5)

⇒ T †
fiTfi =

G2
F

2

[
Ū(K ′)γν(1− γ5)U(P )

] [
Ū(P )γν(1− γ5)U(K ′)

]

·
[
Ū(P ′)γµ(1− γ5)U(K)

] [
Ū(K ′)γµ(1− γ5)U(P )

]

|Tfi|2 =
G2

F

2

1

2
Tr
[
γν(1− γ5)��P ′γµ(1− γ5)��K

]
· Tr

[

γν(1− γ5)��K
′γµ(1− γ5)�P

]
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in the above equation terms have been collected together and completeness
relationships formed. The massless limit has also been used, otherwise the ‘�P ’
and ‘��K’ terms would include a mass as well.

|Tfi|2 =
G2

F

4
· 256(P ′.K ′)(P.K)

Where we have used the trace theorems.

Recall: s = (K + P )2

∼ 2K.P

= 2P ′.K ′

⇒ |Tfi|2 = 64 G2
F ·

s

2
· s
2

= 16 G2
F s2

dσ

dΩ
=

1

64π2s
· 16 G2

F s2

=
G2

F s

4π2

⇒ σ(νe + e− → νe + e−) =
G2

F s

π
(Leading order)



Chapter 17

Approaches to O(n), U(n)
and SU(n)

17.1 Orthogonal transformation

These are transformations that preserve the normalisation of a vector in n-
dimensional spaces. The requirement on these matrices is that:

OO−1 = I = O−1O = OOT

i.e. the inverse matrix is the transpose matrix, these are called orthogonal
matrices.

For a transformation that to preserve normalisation we need to show that

O−1 = OT

the normalisation condition is:

x′ix
′
i = xixi

= aijxj aikxk (aij and aik are matrices)

⇒ δjk = aij aik (1)

xk = a′klx
′
l

x′j = ajkxk

= ajka
′
klx

′
l

or δjlx
′
l = ajka

′
klx

′
l

⇒ δjl = ajka
′
kl (2)
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Consider:

(ajmajk)
︸ ︷︷ ︸

(1)

a′kl = ajm (ajka
′
kl)

︸ ︷︷ ︸

(2)

δmka
′
kl = ajmδjl

⇒ a′ml = aml

= aT
ml

i.e. O−1 = OT

17.2 Independent elements

How many independent elements are there in an n× n orthogonal matrix?
In an n × n matrix there are n2 elements. From the diagonal we get n

equations equal to 1 (as OOT = I). From the off-diagonal we have n2 − n
equations that yield 0. In fact we only have half of these as the transposed
off-diagonals must cancel. Therefore the number of independent equations are:

1

2
n(n− 1)

eg for n = 3 we get 3 independent equations:




a b c
b a d
c d a





where the free equations are b, c and d; a is constrained as it must equal 1.
Examples of 3D orthogonal matrices are:

Rz(γ) =





cos γ sin γ 0
− sin γ cos γ 0

0 0 1





Rx(γ) =





1 0 0
0 cos γ sin γ
0 − sin γ cos γ





17.3 The SU(n) group of transformations

These transformations preserve the normalisation of quantum states, subject to
the condition |U(n)| = I.

if Ψ′ = UΨ

⇒ (Ψ′)† = ΨdaggerU†

(Ψ′)†Ψ′ = ΨdaggerU†UΨ

∴ U†U = U−1U

= I
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And U is a unitary matrix.
How many independent parameters are there in a SU(n) transformation?
There are 2n2 elements in principle as each element is complex. If we mul-

tiply UTU = I then there are n equations yielding 1 from the diagonals. From
the off-diagonals there are 2n

2 (n− 1) equations. The number of free parameters
is therefore:

2n2 − n− n(n− 1) = n2

but since we require SU(n) transformations to satisfy the condition |U(n)| = I

we constrain one more equation giving us

2n2 − n− n(n− 1)− 1 = n2 − 1

parameters.
From this we see that for SU(2) we need 3 parameters. A common choice of

transformation matrix is
(

cos θeiα sin θeiγ

− sin θei(β−γ) cos θei(β−α)

)

In SU(3) you use 8 parameters.

17.3.1 What are the generators of SU(n)?

For each parameter we can write:

U = eiθH

is H Hermitian?

we know: U†U = I

e−iθH† · eiθH = I

⇒ iθ(H −H†) = 0

⇒ H† = H

For SU(n) groups the generators H (or G) are also traceless

|eiH | =

∣
∣
∣
∣
∣
∣
∣
∣
∣

eiλ1 0 · · · 0
0 eiλ2 · · · 0
...

...
. . .

...
0 0 · · · eiλn

∣
∣
∣
∣
∣
∣
∣
∣
∣

= ei(λ1+λ2+···λn)

= eiTr[H]

if eiTr[H] = 1

⇒ Tr[H] = 0
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H is traceless as long as it is diagonalisable, there are non-diagonal H that are
traceless but these are non-trivial.

In summary: for SU(n) there are n2 − 1 parameters and n2 − 1 generators
which are traceless Hermitian matrices. For SU(2) the generators are the Pauli
matrices.

σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)

σ3 =

(
1 0
0 −1

)

where:

[σi, σj ] = 2iǫijkσk

{σi, σj} = 2δijI

we can regard the Pauli matrices as:

• giving eigenvalues

• Combinations of them giving raising and lowering operators

In SU(3) the fundamental entity is made up of 3 objects: colour charge (R,G,B)
there are 8 generators which are represented by 3×3 matrices denoted λi, these
are the Gell-Mann matrices:

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 λ3 =





1 0 0
0 −1 0
0 0 0





λ4 =





0 0 1
0 0 0
1 0 0



 λ5 =





0 0 −i
0 0 0
i 0 0



 λ6 =





0 0 0
0 0 1
0 1 0





λ7 =





0 0 0
0 0 −i
0 i 0



 λ8 =
1√
3





1 0 0
0 1 0
0 0 −2





λ1 λ2 λ3 correspond to the Pauli matrices, therefore SU(2) is a subgroup of
SU(3).

The Gell-Mann matrices are all traceless and normalised thus:

Tr[λi, λj ]N
2 = 2δij

Where N is a normalisation constant. They commute according to:

[
λi

2
,
λj

2
] =

i

2
fijkλk
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where fijk is an 8 × 8 × 8 object which has 512 elements. The none vanishing
values are permutations of:

f123 = 1

f458 = f678 =

√
3

2

f147 = f165 = f246 = f257 = f345 = f376 =
1

2
fother = 0



114 CHAPTER 17. APPROACHES TO O(N), U(N) AND SU(N)



Chapter 18

Charged Current
interactions involving
quarks

We now extend the calculations of weak cross-sections and decays to interactions
involving quarks as well as leptons.

We have already considered (16.2) we want to extend this to processes like
(16.3) where ‘u’ and ‘d’ represent quarks of those respective types (ie u could
be a u, c or t).

Going back to when only u,d and s quarks were important it became apparent
that the weak eigen-states were not the same as the mass eigen-states. In 1963
Cabibbo proposed the following to address this:

(
d′

s′

)

=

(
cos θc sin θc

− sin θc cos θc

)(
d
s

)

For this theory to make sense the d and s masses have to be different. θc is the
Cabibbo angle (∼ 13◦) and its origin is still a mystery (there is some insight
from the Higgs mechanism).

There must be a weak current which couples quarks eg a ‘u’ to a ‘s’ quark.
Instead of introducing a new coupling we assume that charged current couples
to “rotated” quark states.

We know that the form the charged current weak interaction for 2 generations
is of the form:

(ū c̄)γµ(1− γ5)

(
cos θc sin θc

− sin θc cos θc

)(
d
s

)

The Cabibbo theory would have been valid if there had only been 4 quarks.
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However as there is another generation the theory needs to be extended:

(ū c̄ t̄ )γµ(1− γ5)V





d
s
b





where V is the Cabibbo-Kobayashi-Maskaura (CKM) matrix which is unitary
and generally written as:

V =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





where Vud ∼ Vcs ∼ Vtb ∼ 1, the other terms are small (. 0.2)
For this matrix there are n2 = 9 elements but since a unitary matrix is

orthogonal there are only 1
2n(n− 1) = 3 independent elements. The remaining

6 parameters (normally given as angles) can be absorbed into arbitrary phase
rotations of the quark fields leaving us with only 1 independent phase.

The standard parameterisation is then:

V =





c12c13 s12c13 s13 e
−iδ

−s12c23 − c12s23s13 eiδ c12c23 − s12s23s13 eiδ s23c13
s12s23 − c12c23s13 eiδ −c12s23 − s12c23s13 eiδ c23c13





where:

cab = cos θab

sab = sin θab

The phase eiδ is what causes CP violation. Note: even if δ is maximal it
can’t, alone, explain the matter/anti-matter asymmetry that we observe in the
universe.

In the early 1970s (before the charm quark was discovered), recall that the
form of the charged current interaction was:

(ū c̄)

(
cos θc sin θc

− sin θc cos θc

)(
d
s

)

Glashow, Illiopoulos and Maiani (GIM) proposed the existence of the charm
quark by using measurements of the weak decay of K0 → µ+µ− (18.1) they
also predicted the mass of the charm quark. The amplitude of K0 → µ+µ− is
∼ cos θc sin θc.

The predicted rate:

R =
K0 → µ+µ−

K0 → anything

was measured to be higher than what was observed. This was solved by GIM
where they predicted an additional diagram (18.2). This additional diagram has
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Figure 18.1: Weak decay of K0 → µ+µ−

Figure 18.2: Kaon decay through c-quark exchange

an amplitude ∼ sin θc cos θc, it is this term that causes the lower than predicted
rate.

If the u and c masses had been the same then these two diagrams would
cancel. Hence using the measured rate it was possible to predict the mass of
the c-quark. The charm quark was discovered directly soon afterwards.

These Cabibbo terms cause certain processes to be suppressed, an example of
this preferential decay is that ofD+(cd̄). The preferred decay mode isD+(cd̄)→
K̄0(sd̄) + π+(ud̄) even though the decay D+(cd̄) → π0(dd̄) + K+(us̄) is also
allowed. The latter decay is ‘doubly’ suppressed by a factor sin2 θc compared
to the former which has a factor cos2 θC .

Note decay rates ∼ cos4 θc or ∼ sin4 θc as squared and contribution from
each vertex.
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18.1 νq scattering

We have previously calculated the weak current and cross-section for νee
− scat-

tering, we can use these results to easily find the cross-section for νq scattering.
We obviously don’t have a ν and quark beams so the quarks are generally
constituents of hadrons which would need to be considered as deep inelastic
scattering, despite this limitation we can still form a weak current for point-like
scattering.

Considering 16.3 we construct the current just as we did for leptons, making
the appropriate substitions to account for u and d quarks:

jµ
lepton = Ūνγ

µ 1

2
(1− γ5)Ue

→ jµ
quark = Ūuγ

µ 1

2
(1− γ5)Ud

Therefore the same procedure as before leads to:

dσ

dΩ
(νed→ e−u) =

G2
F s

4π2

=

(
dσ

dΩ
(ν̄ed̄→ e+ū)

)

dσ

dΩ
(ν̄eu→ e+d) =

G2
F s

16π2
(1 + cos θ)2

=

(
dσ

dΩ
(νeū→ e−d̄)

)

where θ is the centre of mass scattering angle. The form of the cross-section is
often written as:

dσ

dΩ
(ν̄eu→ e+d) =

G2
F s

16π2
(1− y)2

where: (1− y)2 ∼ 1

2
(1 + cos θ)2

and y is one of the variables associated with deep inelastic scattering.

18.2 Charged Pion and Kaon decay

Consider the decays of the charged pions and kaons (18.3):

π±/K± → e±/µ± +
(−)
ν e/

(−)
ν µ−
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Figure 18.3: Pion decay to two muons

For π → µ− + ν̄µ the four momenta are:

π(q)→ µ−(p) + ν̄µ(k)

q = p+ k

∴ Tfi =
GF√

2
fπ cos θcqµŪ(P )γµ(1− γ5)V (K)

We may have thought that at the quark-W vertex we could write the form
as Ūdγ

µ 1
2 (1 − γ5)Vū however the quarks are bound states and not ‘free’. The

meson’s 4-momenta qµ is the only 4-vector available. fπ is a function of q2, but
q2 = m2

π so fπ is constant. The pion decay constant characterises the strong
interaction probability of the dū process and should, in principle, be calculable
in QCD

Simplify Tfi further

Tfi =
GF√

2
fπ cos θc







Ū(P ) [Pµγ
µ +Kµγ

µ]
︸ ︷︷ ︸

q=p+k

(1− γ5)V (K)







recall that:

�pŪ = mµŪ

(��K +mν)V ∼��KV = 0

⇒ Tfi =
GF√

2
fπ cos θcmµ

{
Ū(P )(1− γ5)v(K)

}

∴ |Tfi|2 =
G2

F

2
f2

π cos2 θcm
2
µTr

{
(�p+mµ)(1− γ5)�k(1 + γ5)

}

= 4G2
F f

2
π cos2 θcm

2
µ(P.K)

In the pion rest frame ~k = −~p, so

P.K = EE′ + k2

= EE′ + E′2
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The decay rate is given by:

dΓ =
1

2mπ
· |Tfi|2 ·

d3P

(2π)3 2E
· d3K

(2π)3 2E′
· (2π)4 δ(q − p− k)

=
1

2mπ
·
G2

F f
2
π cos2 θcm

2
µ

(2π)2

∫
d3P d3K

EE′
δ(mπ − E − E′)δ(~k + ~p)E′(E + E′)

The integration over d3P is removed by the delta, there is no angular depen-
dence, dΩ→ 4π leaving an integration over E′

⇒ Γ =
G2

F f
2
π cos2 θcm

2
µ

2mπ(2π)2
.4π

∫

dE′ · E′2

(

1 +
E′

E

)

δ(mπ − E − E′)

Recall:

δ[f(E′)] =
δ(E′ − E′

0)

∂f

∂E′

∣
∣
∣
∣
E′=E′

0

and E = (m2
µ + E′2)

1
2

where E′
0 =

m2
π −m2

µ

2mπ

The result of the integration in Γ is E2
0

⇒ Γ =
G2

F f
2
π cos2 θcm

2
µ

8π
·mπ

(

1−
m2

µ

m2
π

)

for the decay to an electron: mµ → me and for kaon decay: cos2 θ → sin2 θ and
mπ → mK

The ratio of muon to electron decays is:

R =
Γ(π− → e−ν̄e)

Γ(π− → µ−ν̄µ)

=

(
me

mµ

)2

·
(
m2

π −m2
e

m2
π −m2

µ

)2

= 1.28× 10−4

The decay to muons is strongly favoured over the decay to electrons, this is
understood by considering the spin and direction of travel of the particles. As
the pion is spin-0 and assumed to be at rest then the electron and neutrino
must have opposite spins as well as travel in opposite directions. This would
give them both chirality 1 (both would have spin and direction aligned) as the
neutrino can only be right handed the electron must have chirality -1, which in
its boosted (ie massless) state is suppressed, this suppression is less pronounced
for the muon due to its higher mass.
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18.3 The width of the W-boson

This is an “exact” first order calculation where we assume the masses of the
products are 0. The possible channels are:

W+ → e+νe

→ µ+νµ (18.4)

→ τ+ντ

→ u+ d̄ type

→ c+ d̄ type

(→ t+ d̄ type) (highly suppressed)

The massless assumption is valid for these channels (except the t) as initial mass
∼1 GeV initial mass ∼80 GeV

Figure 18.4: decay of the W boson to a muon and a neutrino

Tfi =
gw√

2
ǫµŪ(K)γµ

1

2
(1− γ5)V (P )

⇒ |Tfi|2 =
g2

w

2
· 1
3
·
∑

ǫµǫν∗

×
{

V̄ (P )γν 1

2
(1− γ5)U(K)

}

×
{

Ū(K)γµ 1

2
(1− γ5)V (P )

}
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The factor of 1
3 is the average of the W polarisations.

|Tfi|2 =
1

3

g2
w

2

[

−gµν +
qµqν

M2

]

· Tr[(�P −mµ)γν 1

2
(1− γ5)
︸ ︷︷ ︸

move to end

��Kγµ 1

2
(1− γ5)]

=
g2

w

24

[

−gµν +
qµqν

M2

]

· Tr[(�P −mµ)γν��Kγµ2(1− γ5)2]

=
g2

w

12

[

−gµν +
qµqν

M2

]

· Tr[�Pγ
ν��Kγµ(1− γ5)]

remove mµ term as Tr[γαγβγγ ] = 0 now using trace theorem 2 and that the γ5

term is 0:

|Tfi|2 =
g2

w

12

[

−gµν +
qµqν

M2

]

· 4 · [PµKν + PνKµ − gµν(P.K)]

=
g2

w

3

[

− gµν(PµKν + PνKµ)− gµν(−gµν(P.K))

+
qµqν

M2
(PµKν + PνKµ) +

qµqν

M2
(−gµν(P.K))

]

=
g2

w

3

[

−2(P.K) + 4(P.K) +
2

M2
(q.P )(q.K)− 1

M2
q2(P.K)

]

recall: (q2 = M2)

=
g2

w

3

[

(P.K) +
2

M2
(q.P )(q.K)

]

In the W rest frame:

q.K =
M2

2

(

1−
m2

µ

M2

)

q.P =
M2

2

(

1 +
m2

µ

M2

)

⇒ |Tfi|2 =
g2

w

3

[

2

M2

M2

2

(

1 +
m2

µ

M2

)

M2

2

(

1−
m2

µ

M2

)]

=
g2

w

3

M2

2

(

1 +
m2

µ

M2

)(

1−
m2

µ

M2

)

Γ =
g2

w

48π
M

(

1 +
m2

µ

M2

)(

1−
m2

µ

M2

)

= 0.227 GeV

The total W width is

Γtotal = NlΓlν +NcNqΓlν

= (3 + 3× 2)Γlν (only 2 generations of quark used)

= 2.05 GeV
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The value (PDG) is measured as = 2.141± 0.041 GeV
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Chapter 19

Neutral Current

19.1 Weinberg-Salam model

This will allow us to find the neutral current coupling of the Z0 to fundamental
particles. After covering QCD we will return to the Weinberg-Salam model
starting from the gauge symmetry and then the breaking of this symmetry by
the Higgs mechanism.

A certain structure was perceived in the charged current weak process and
similarities were seen between the weak and electromagnetic interactions. The
charged current weak interaction operates between left-handed leptons and
quark doublets.

χL =
1

2
(1− γ5)

(
νe

e−

)

When a W+ is absorbed the matrix element is:

= Ūνγ
µ 1

2
(1− γ5)Ue

= Ūνγ
µ 1

4
(1− γ5)2Ue

= Ūν
1

2
(1 + γ5)γµ 1

2
(1− γ5)Ue

Using the 2 component weak isospinors we can write@

χLγ
µτ+χL

where τ+ is the raising operator in weak isospin space.
We also know the form of the electromagnetic current

−eŪγµU

or

jµ
EM = −e(ŪLγ

µUL + ŪRγ
µUR)

125
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The charged current interaction is:

χLγ
µτ+χL = (ν̄e, ē

−)Lγ
µ

(
0 1
0 0

)(
νe

e−

)

L

if the symmetry were exact we would expect the following interaction:

= (ν̄e, ē
−)Lγ

µ

(
1 0
0 −1

)(
νe

e−

)

L

=
1

2
ν̄eγ

µνe −
1

2
ē−Lγ

µe−L

But this neutral current does not exist. This theory was used before the discov-
ery of neutral current which is not compatible with the above form.

There is another entity which is the right-handed electron. Since this object
is not involved in charged current weak interactions it must be a singlet in weak
isospin space.

So we must invent a new quantity which differentiates between the states in
the electron left-handed doublet and the electron right-handed singlet, i.e. the
members of the doublet must have the same value of their of their quantum
number.

The solution to this is weak hypercharge:

Y = 2Q− 2T3

T3 Q Y
νe

1
2 0 −1

e−L − 1
2 −1 −1

e−R 0 −1 −2
uL

1
2

2
3

1
3

dL − 1
2 − 1

3
1
3

uR 0 2
3

4
3

dR 0 − 1
3 − 2

3

For the electromagnetic interaction we can multiply the wavefunction by phase
factors i.e.

Ψ′ = eiqχΨ

if χ is a number such a transformation is called a global phase or gauge transfor-
mation. However if χ is χ(x, t) then we have a local gauge transformation and
the electromagnetic field, Aµ, has to be introduced so that the gauge invariance
of the Lagrangian is preserved.

If we require the new theory to be invariant with respect to the local trans-
formation of the form

eiY χ(x,t)

then a massless Bµ field has to be introduced.
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The weak left handed isospinor is transformed by an (S)unitary transforma-
tion involving 3 parameters.

Alternatively, the SU(2) spinor is in an O(3) space which requires 3 axis,
these axis can be defined locally under gauge transformation and 3 weak massless
fields must be introduced if the system is to be invariant with respect to these
gauge transformations. The interactions will be of the form:

gwχ̄Lγ
µ τi

2
χLW

2
µ +

g′

2
jY
µ B

µ

or:

gwχ̄Lγ
µ τi

2
χLW

2
µ +

g′

2
(jEM

µ − j3µ)Bµ

When the symmetries breaks the massless W 1
µ and W 2

µ fields combine to give
the massive W+ and W− bosons. The W 3

µ and Bµ fields mix to give a massless
photon and the massive Z0 i.e.

(
Aµ

Zµ

)

=

(
cos θw sin θw

− sin θw cos θw

)(
Bµ

W 3
µ

)

or:

(
Bµ

W 3
µ

)

=

(
cos θw − sin θw

sin θw cos θw

)(
Aµ

Zµ

)

where θw is the Weinberg, or weak, mixing angle.
Now express, in terms of Aµ and Zµ:

= gwj
3
µW

µ
3 + g′(jµ

EM − j
µ
3 )Bµ

= (gwj
3
µ sin θw + g′jEM

µ cos θw − g′j3µ cos θw)Aµ

+ (gwj
3
µ cos θw − g′jEM

µ sin θw + g′j3µ sin θw)Zµ

given that:

Bµ = Aµ cos θw − Zµ sin θw

W 3
µ = Aµ sin θw + Zµ cos θw

The Aµ term only couples to the electromagnetic interaction so the first and
third terms within the bracket cancel:

gwj
3
µ sin θw = −g′j3µ cos θw

= 0

⇒ g′ = gw tan θw

The second term in the Aµ bracket must equal the electron charge:

gw tan θw cos θw = Q = e

gw sin θw = e

⇒ g′ cos θw = e
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the 2 couplings: gw and g′ can be replaced by e and θw, where is determined by
experiment .

From the Zµ terms we can get the coupling of the Z0 to leptons and quarks.

= (gwj
3
µ cos θw − g′jEM

µ sin θw + g′j3µ sin θw)Zµ

= (gwj
3
µ cos θw − gw tan θwj

EM
µ sin θw + gw tan θwj

3
µ sin θw)Zµ

=
gw

cos θw
(j3µ cos2 θw − jEM

µ sin2 θw + j3µ sin2 θw)Zµ

=
gw

cos θw
(j3µ − jEM

µ sin2 θw)Zµ

⇒ jNC
µ = j3µ − jEM

µ sin2 θw

Using the forms of the current:

jNC
µ = Ψ̄fγ

µ

(
1

2
(1− γ5)T 3 − sin2 θwQ

)

Ψf

Where Ψf is the wavefunction of a fermion.

jNC
µ = Ψ̄fγ

µ 1

2

(

Cf
V − C

f
Aγ

5
)

Ψf

Where the vector (CV ) and vector-axial (CA) couplings are determined in the
standard model, given θw and equal to:

Cf
V = T 3

f − 2 sin2 θwQf

Cf
A = T 3

f

Where T 3
f and Qf are the third component of weak isospin and the electromag-

netic charge of the fermion, f, respectively.

Cv CA

(νe, νµ, ντ ) 1
2

1
2

(e−, µ−, τ−) 1
2 + 2 sin2 θw − 1

2

(u, c, t) 1
2 − 4

3 sin2 θw
1
2

(d, s, b) − 1
2 − 2

3 sin2 θw − 1
2

19.2 Width of the Z0

For Z0 → ff̄ we get a transmission of:

Tfi =
gw

cos θw
ǫµŪ(P ′)γµ 1

2
(Cf

V − C
f
Aγ

5)V (P )
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Figure 19.1: decay of the Z0 to a uū pair

Figure 19.2: fermion production via electron annihilation mediated by a Z0

19.3 Cross-section for e+e−
Z0

−→ ff̄

|Tfi|2 =
gw

cos2 θw

[

V̄ (P2)γ
µ 1

2
(Ce

V − Ce
Aγ

5)U(P1)

]

·
(

−gµν + qµqν

M2

s−M2 − iMΓ

)

·
[

Ū(P4)γν
1

2
(Cf

V − C
f
Aγ

5)V (P3)

]

The ‘iMΓ’ term is included as the Z0 can decay. For unpolarised electrons
undergoing e−e+ → µ−µ+:

dσ

dΩ
=
α2

4s

[
Ao(1 + cos2 φ) +A1 cosφ

]

Where A0 and A1 are functions of CV and CA, Z0 introduces an asymmetry,
the A1 term.
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For lowest order QED calculations, we take A0 = 1 and A1 = 0, so a sym-
metric distribution is predicted and the weak interaction introduces a forward-
backwards asymmetry. Measurements at the e+e− PETRA collider confirmed
these interference effects of the virtual Z0 and γ contributions. At

√
s = 34 GeV

the cross-section versus cos θ was measured and compared with QED.
The cross-section at the Z0 peak for e+e− → ff̄ is ∼30 mb. However the

resonance curve is modified by radiative processes (19.3) These corrections can

Figure 19.3: Radiative correction to e+e−
Z0

−−→ ff̄

be calculated; they lead to a shift in the peak and a reduction in the peak
cross-section.



Chapter 20

The Strong Force (QCD)

20.1 Deep inelastic scattering

Figure 20.1: Deep inelastic scattering of an electron from a proton

For such a process the following dimensionless variables are defined:

x =
−q2
2p.q

=
Q2

2p.q

y =
q.p

k.p

at the proton vertex:

q + p = pH

q2 + p2 + 2p.q = p2
H

q2 + 2p.q +m2
p = m2

H

131
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somH is a function of the invariant q2 and 2p.q and x is the ratio of the invariants
characterising the hadronic vertex.

Historically, the ignorance of the hadron vertex was (is) described by struc-
ture functions.

We know that probes: γ,W±, Z0 interact with quarks and anti-quarks in
the proton/neutron. The q and q̄ interact with gluons which carry around 50 %
of the nucleon momentum. The nucleon is a QCD system of qq̄ and gluons all
interacting together.

We therefore calculate deep inelastic scattering cross-section by calculating
the scattering of leptonic probes by q and q̄ constituents and modify to account
for qg interactions.

20.2 The quark-parton model

Figure 20.2: Schematic of deep inelastic scattering under the quark-parton
model

At the hadronic vertex the incoming quark is assumed to carry a fraction,
x, of the whole proton’s 4-momenta, P; i.e the individual quark has 4-momenta
xP.

q + xP = p′

q2 + 2xP.q + x2P 2 = (P ′)2

⇒ x =
−q2
2q.P

(q ≫ xp and q2 ≫ m2
H)
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What is ŝ, the centre of mass energy, in the quark-parton system?

s = (K + P )2

≃ 2 ~K. ~P

⇒ ŝ = (K + xP )2

≃ 2x ~K.~P

⇒ ŝ = xs

y in the quark parton model.

y =
q.P

K.P

→ xq.P

xK.P

=
(K −K ′).P

K.P

= 1− K ′.P

K.P
(= 1− u

s
)

= 1− E′Eq − E′Eq cos θ

E′Eq − E′Eq(−1)

= 1− 1 + cos θ

2

=
1

2
(1− cos θ)

Therefore y = 1 signifies a very deeply inelastic collision and occurs when cos θ =
−1

Now we want an expression for e± scattering off a nucleon via photon ex-
change. Recall eµ scattering:

dσ

dΩ
=

1

64π2s
· 2e4

(
s2 + u2

t2

)

for quarks we replace e4 with e4q2i where q2i = + 2
3 ,− 1

3 etc
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As:

y =
1

2
(1− cos θ)

dy = −d(cos θ)

2

⇒ dσ

dΩ
=

dσ

2πd(cos θ)

=
1

64π2ŝ
· 2e4q2i

(
ŝ2 + û2

t̂2

)

dσ

2π2dy
=

1

64π2Q4ŝ
· 2e4q2i ŝ2

(

1 +
û2

ŝ2

)

(t2 = Q4)

dσ

dy
=

1

8π
· e

4q2i
Q4
· ŝ(1 + (1− y)2) (

u

s
= 1− y)

∴
dσ

dy
=

2πα2

Q4
q2i ŝ(1 + (1− y)2)

In the nucleon the fraction of quarks having x between x and x+δx isQi(x,Q
2)dx

where Qi is the parton distribution function (PDF) for the quark concerned.
PDFs cannot be calculated in QCD, but their evolution with x and Q2 can be.

The aim of deep inelastic scattering experiments is to measure Qi(x,Q
2)

and compare their evolution with theory: Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations.

dσ

dy

∣
∣
∣
∣
x→x+δx

=
2πα2

Q4
q2i (1 + (1− y)2) · xs Q(x)dx

dσ

dxdy
=

2πα2

Q4
q2i (1 + (1− y)2) · s

(
xQi(x) + xQ̄i(x)

)

The photon interacts equally with q a q̄. In the absence of QCD effects the Qi

are functions of x, this is known as “scaling”. However QCD effects cause Qi

to become a function of x and Q2 (hence “scaling violation”). There is also
a gluon distribution in the proton. For a ν beam we worked out the proton
cross-sections so:

dσ

dxdy
∝
(
xQd(x) + xQ̄u(x) (1− y)2

)

as this is a charged current w exchange. Here particular quarks are ‘picked out’
and one can measure a specific density (either u or d type). To encompass quark
densities they are written in terms of a structure function:

F2

x
∼
∑

i

(
Qi(x,Q

2) + Q̄i(x,Q
2)
)

At fixed Q2, experiments determine F2. The experiments are e± + p, ν + n etc.
All experimental points are fed into a fit to determine u(x), d(x), s(x) etc
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20.3 Drell-Yan process

Figure 20.3: Drell-Yan interaction between two quarks resulting in two electrons

In the centre of mass frame the kinematics for the Drell-Yan process (20.3)
are:

x1p1 = x1(p, 0, 0, p)

x2p2 = x2(p, 0, 0,−p)
q = ([x1 + x2]p, 0, 0, [x1 − x2]p)

q2 =
(
[x1 + x2]

2 − [x1 − x2]
2
)
p2

= 4x1x2p
2

= x1x2s

= ŝ

since we can approximate Drell-Yan processes to e−e+ → µ−µ+:

σ(e−e+ → µ−µ+) =
4πα2

3s

⇒ d2σ

dx1dx2
=

1

3
· 4πα

2

3ŝ
q2i
(
Qi(x1) Q̄i(x2) + Q̄i(x1)Qi(x2)

)

Many processes are Drell-Yan like: eg. u+ d̄→ e+ + νe.

As well as the parton distributions their gluon equivalents must also be
considered as these are important for predicting certain processes: eg. Higgs
production at the LHC (20.4). Colour interactions are assumed to be a very
similar to electromagnetic interactions so the rules for QED are used with the
substitution: α→ αs For example in quark scattering, q1q2 → q1q2:

|Tfi|2 ∼
4

9

(
s2 + u2

t2

)

(
4

9
is a colour factor)
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Figure 20.4: Higgs production through a Drell-Yan type process

or for qq̄ → qq̄

|Tfi|2 ∼
4

9

(
s2 + u2

t2
+
t2 + u2

s2

)

∼ 8

27

u2

st

20.4 Evolution of the structure functions (DGLAP)

20.4.1 QCD Compton scattering

Figure 20.5: QCD Compton-Scattering γ∗p→ qg
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Kinematics in γ∗p (photon/proton) frame (20.5)

z =
Q2

2q1.q

=
x

y

=
Q2

2yp.q

ŝ = (yp+ q)2

= y2p2 + q2 + 2yp.q

∴ ŝ = 0−Q2 +
Q2

z

=
Q2(1− z)

z

Kinematics in the γ∗q (photon/quark) frame (20.6):

Figure 20.6: γ ∗ q frame QCD Compton scattering

ŝ = (g + q2)
2

≃ 2g.q2

= 2k′.k′ − 2|k′||k′| cos(180◦)

= 4(k′)2

t̂ = (g − q1)2

= −2k k′(1− cos θ)

û = (q1 − q2)2

= −2k k′(1 + cos θ)

also: − û− t̂ = 4k k′

Recall: ŝ+ û+ t̂ = −Q2

∴ −û− t̂ = ŝ+Q2

= 4k k′
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The QED Compton process is:

dσ

dΩ
=
α2

2s

{

−u
s
− s

u
+

2tQ2

su

}

Now convert this to QCD:

dσ

dΩ

∣
∣
∣
∣
QCD = Cf

ααs

2ŝ
· e2i
{

− t̂
ŝ
− ŝ

t̂
+

2ûQ2

ŝt̂

}

Where the ααs term is due to the one QED and one QCD vertex and Cf is
the colour factor, Cf = 4

3 . There are 8 possible colour configurations; then
averaging over the number of quark colours gives 8

3 hence 4
3 with a factor 1

2
from αs.

A more interesting quantity is the transverse momentum of the outgoing
quark, p⊥ = k′ sin θ. Now:

ŝt̂û = 4(k′)2(−2k.k′)(1− cos θ)(−2k.k′)(1 + cos θ)

= 16(k′)2(k.k′)2 sin2 θ

= 16 k2(k′)2p2
⊥

= (ŝ+Q2)2p2
⊥ (ŝ+Q2 = 4k.k′)

For small scattering angles

dp2
⊥ = (k′)2d(sin2 θ)

= 2(k′)2 sin θ cos θ dθ

=
ŝ

2
sin θ dθ

dΩ = 2π sin θ dθ

⇒ dp2
⊥ =

ŝ

2

dΩ

2π

⇒ dΩ =
4π

ŝ
dp2

⊥
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in the small angle limit −t̂≪ ŝ

⇒ p2
⊥ =

ŝt̂(−ŝ−Q2)

(ŝ+Q2)2

=
ŝ(−t̂)
ŝ+Q2

(1)

⇒ dσ

dp2
⊥

=
4

3
· 4π
ŝ
· ααse

2
i

2ŝ
·
{

− ŝ
t̂

+
2ûQ2

ŝt̂

}

=
8π

3
· ααse

2
i

ŝ2
·
(−1

t̂

)

·
{

ŝ+ 2
(ŝ+Q2)Q2

ŝ

}

Using: 1 and z =
Q2

ŝ+Q2
=
x

y

⇒ dσ

dp2
⊥

=
4π2α

ŝ
· 2αs

3π
· e

2
i

ŝ
· ŝ

p2
⊥(ŝ+Q2)

·
{

ŝ+ 2
(ŝ+Q2)Q2

ŝ

}

= σ0 ·
2αs

3π
· e

2
i

p2
⊥

·
{

ŝ

(ŝ+Q2)
+ 2

Q2

ŝ

}

Where σ0 = 4π2α
s is the γ∗p total cross-section

dσ

dp2
⊥

= σ0 ·
2αs

3π
· e

2
i

p2
⊥

·
{
ŝ2 + 2Q2(ŝ+Q2)

(ŝ+Q2)ŝ

}

= σ0 ·
αs

2π
· e

2
i

p2
⊥

· Pqq(z)

Where:

Pqq(z) =
4

3
·
(

1 + z2

1− z

)

is the probability of a quark emitting a gluon and so becoming a quark with
momentum reduced by a factor, z.

σ(γq → qg) =

∫ Ŝ
4

µ2

dp2
⊥

dσ

dp2
⊥

where µ2 is a cut of so that the integral is not divergent

σ(γq → qg) = e2iσo

∫ Ŝ
4

µ2

dp2
⊥

p2
⊥

· αs

2π
· Pqq(z)

= e2iσo
αs

2π
Pqq(z) log

(
Q2

µ2

)

F2

x
=
∑

q

e2q

∫ 1

x

dy

y
Q(y)

[

δ(1− x

y
) +

αs

2π
Pqq

(
x

y

)

log

(
Q2

µ2

)]
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Figure 20.7: Leading order and next to leading order gluon vertices

20.5 Boson-Gluon fusion

Figure 20.8: Boson-gluon fusion, u and t channel

dσ

dΩ

∣
∣
∣
∣
BGF

=
1

4

e2iααs

s

[
u

t
+
t

u
− 2

sQ2

tu

]

F2(x,Q
2)

x

∣
∣
∣
∣
BGF

=
∑

q

e2q

∫ 1

x

dy

y
G(y)

αs

2π
Pqg

(
x

y

)

log

(
Q2

µ2

)

Where G(y) is the gluon density function in the proton and:

Pqg =
1

2

(
z2 + (1− z)2

)

is the probability that a gluon splits into a qq̄ pair so:

dQi(x,Q
2)

d(logQ2)
=
αs

2π

∫ 1

x

dy

y

{

Qi(y,Q
2)Pqq

(
x

y

)

+G(y,Q2)Pqg

(
x

y

)}

dG(x,Q2)

d(logQ2)
=
αs

2π

∫ 1

x

dy

y

{

Qi(y,Q
2)Pgq

(
x

y

)

+G(y,Q2)Pgg

(
x

y

)}

These are the DGLAP equations at leading order iπαs



Chapter 21

Local gauge invariance and
determination of the form
of interactions

21.1 Local gauge invariance of electromagnetic
field

We require the Dirac equation to be covariant if the wavefunction undergoes
local phase transformation.

Ψ→ Ψ′ = eiqα(x)Ψ

The Dirac equation is:

(iγµ∂
µ − qAµ −m)Ψ = 0

Under the local gauge transformation we have:

eiqα(x)(iγµ∂
µ + iγµ∂

µ(iqα)− qγµA
′µ −m)Ψ = 0

But A′µ = Aµ − ∂µα

⇒ 0 = eiqα(x)(iγµ∂
µ − qγµ∂

µα− qγµ(Aµ − ∂µα)−m)Ψ

= eiqα(x)(iγµ∂
µ − qγµ∂

µα+ qγµ∂
µα− qγµA

µ −m)Ψ

= eiqα(x)(iγµ∂
µ − qγµA

µ −m)Ψ

If we require the Dirac equation to be gauge invariant (covariant) then the
massless electromagnetic field must be introduced where Aµ is invariant under
gauge transform

A′µ = Aµ − ∂µα
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This involves replacing i∂µ in the equation with: i∂µ − qAµ or

Dµ = ∂µ + iqAµ

We need to demonstrate that Dµ transforms in the same way as Ψ:

(DµΨ)′ = D′µΨ′

= (∂µ + iqAµ)′eiqα(x)Ψ

= eiqα(x)(∂µ + iq∂µα+ iqA′µ)Ψ

= eiqα(x)(∂µ + iq∂µα+ iqAµ − iq∂µα)Ψ

= eiqα(x)(∂µ + iqAµ)Ψ

= eiqα(x)DµΨ

Now look at the Lagrangian for the free Dirac equation, a Lagrangian can be
constructed such that a simple operation yields the Dirac equation.

L = iΨ̄γµ∂
µΨ−mΨ̄Ψ

for the Dirac equation to remain covariant we have to introduce a massless field
changing ∂µ to ∂µ + iqAµ so the Dirac Lagrangian becomes:

L = iΨ̄γµD
µΨ−mΨ̄Ψ

= Ψ̄(−iγµD
µ −m)Ψ− qΨ̄γµΨAµ

Hence, by demanding local gauge invariance we are forced to introduce a vector
field, Aµ, called the gauge field which couples to the Dirac particle (charge q) in
exactly the same way as the photon field. The new interaction may be written
as jµA

µ where jµ = −eΨ̄γµΨ is the current density.

If we consider this new field as a physics photon field we must add a term
corresponding to its kinetic energy. As the kinematic term must be invariant it
can only involve the gauge invariant field tensor.

Fµν = ∂µAν − ∂νAµ

so the Lagrangian of WED is:

LQED = Ψ̄(iγµ∂
µ −m)Ψ + eΨ̄γµA

µΨ− 1

4
FµνF

µν

The addition of a mass term is prohibited by gauge invariance. This can be seen
by substituting A′µ = Aµ + ∂µα into the Proca equation, if gauge invariance is
required then it changes, only as m = 0 does it become invariant. This shows
that the photon must be massless. The photon couples only to charge and
therefore cannot self couple.
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21.2 Local gauge invariance and the electro-weak
interaction

We have already seen that the electro-weak interaction acts between left-handed
weak isospin doublets, χL, and right-handed weak isospin singlets, ΨR, We have
also identified hyper charge as a charge like object in the weak isospin space.
The left and right handed components transform as:

χL → χ′
L = exp

{

igwα(x)
τ

2
+ ig′β(x)

Y

2

}

χL

ΨR → Ψ′
R = exp

{

ig′β(x)
Y

2

}

ΨR

For a Dirac-like equation to remain covariant under such a transformation we
must introduce 4 massless fields: W 1

µ , W
2
µ , W

3
µ and Bµ in the following way:

L = χ̄Lγ
µ

(

i∂µ −
gw

2
τ.Wµ −

g′

2
Y.Bµ

)

χL

+ Ψ̄Rγ
µ

(

i∂µ −
g′

2
Y.Bµ

)

ΨR

− 1

4
WµνW

µν − 1

4
BµνB

µν

Where the final two terms are the kinetic energy and self coupling of the Wµ and
Bµ fields. Note there are no mass terms above. Adding simple mass terms is not
possible without breaking gauge invariance. To add mass (as is experimentally
required) in a gauge invariant manner we use the Higgs mechanism.

Mass terms are of the form:

Ψ̄mΨ = (Ψ̄L + Ψ̄R)m(ΨL + ΨR)

such terms would link a left-handed electron in the SU(2) weak doublet to a
right-handed electron which is a singlet. If SU(2)⊗U(1) symmetry were exact
this could not happen. Also, for the fields we have introduced to preserve gauge
invariance they have to be massless, since terms like mBµB

µ do not preserve
gauge invariance.

Consider how Wµ changes under a gauge transform.

χ′
L = exp

{

i
gw

2
αi(x)τ

}

χL (g′ term acts with Bµ)

Then:

(DµχL)′ = exp
{

i
gw

2
αi(x)τ

}

DµχL
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Make an infinitesimal change to W ′µ
i = Wµ

i + δWµ
i

(DµχL)′ =
{

∂µ + igw
τi
2
Wµ

i + igw
τi
2
δWµ

i

}

χ′
L LHS

Where: Dµ = ∂µ + igw
τi
2
Wµ

i

(DµχL)′ =
{

∂µ + igw
τi
2
Wµ

i + igw
τi
2
δWµ

i

}

·
(

1 + igwαi(x)
τi
2

)

χL (first order expansion)

=

{

∂µ + igw∂
µαi

τi
2

+ igwαi
τi
2
∂µ

+ igw
τi
2
Wµ

i + igwigw
τi
2
Wµ

i αi
τi
2

+ igw
τi
2
δWµ

i + . . .

}

χL

Now consider the RHS

=
(

1 + igwαi
τi
2

)(∂µ + igw
τi
2
Wµ

i

)

χL

=
(

∂µ + igw
τi
2
Wµ

i + igwαi
τi
2
∂µ + igwαi

τi
2
igw

τi
2
Wµ

i

)

χL

equating LHS = RHS and making obvious cancellations:

igw
τi
2
δWµ

i = −igw∂
µαi

τj
2

− igwigw
τi
2

τj
2
Wµ

i αj

+ igwigw
τj
2

τi
2
Wµ

i αj

τi
2
δWµ

i = −τi
2
∂µαi − igw

[τi
2
,
τj
2

]

αjW
µ
i

= −τi
2
∂µαi − igwiǫijk

τk
2
αjW

µ
i

= −τi
2
∂µαi − gw

τi
2
~α× ~W

⇒ δWµ
i = −∂µαi − gw~α× ~W

⇒Wµ
i →W ′µ

i = Wµ
i − ∂µαi − gw~α× ~W

Now consider the self interaction terms in L

−1

4
WµνW

µν − 1

4
BµνB

µν

where

Bµν = ∂µBν − ∂νBµ

However, the Wνµ term could not be of the same form and retain gauge
invariance. This is because of the extra term in W ′µ

i , this makes

Wµν = ∂µWν − ∂νWµ − gw
~Wµ × ~Wν
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Figure 21.1: Examples of trilinear and quadrilinear self coupling among the
weak bosons

The − 1
4WµνW

µν term now yields the trilinear and quadrilinear coupling of the
weak bosons (21.1)

−1

4
WµνW

µν = −1

4

{

∂µWν − ∂νWµ − gw
~Wµ × ~Wν

}{

∂µW ν − ∂νWµ − gw
~Wµ × ~W ν

}

= −1

4

{

(∂µWν − ∂νWµ) (∂µW ν − ∂νWµ)

− gw (∂µWν − ∂νWµ) ~Wµ × ~W ν − gw (∂µW ν − ∂νWµ) ~Wµ × ~Wν (trilinear coupling)

+ g2
w( ~Wµ × ~Wν)( ~Wµ × ~W ν)

}

(quadrilinear coupling)

21.2.1 Trilinear coupling

From the above we see that the second and third terms are the same and that
both account for trilinear coupling:

−1

4
gw · 4(∂µWν) ~Wµ × ~W ν

as:

(∂µWν − ∂νWµ) ~Wµ × ~W ν = 2(∂µWν) ~Wµ × ~W ν

so at the vertex (21.2)



146CHAPTER 21. LOCAL GAUGE INVARIANCE AND DETERMINATION OF THE FORM OF INTERA

Figure 21.2: Simple schematic of trilinear vertex

W 1
µ = ǫ1µe

−ik1
µxµ

⇒ ∂1
µW

1
µ = −ik1

µǫ
1
µe

−ik1
µxµ

⇒ −gw(∂µWµ) ~Wµ × ~W ν = gw

∣
∣
∣
∣
∣
∣

ik1
νǫ

1
µ ik2

νǫ
2
µ ik3

νǫ
3
µ

ǫν1 ǫν2 ǫν3
ǫµ1 ǫµ2 ǫµ3

∣
∣
∣
∣
∣
∣

= igw

{
k1

νǫ
1
µ(ǫν2ǫ

µ
3 − ǫµ2 ǫν3)− k2

νǫ
2
µ(ǫν1ǫ

µ
3 − ǫµ1 ǫν3) + k3

νǫ
3
µ(ǫν1ǫ

µ
2 − ǫµ1 ǫν2)

}

= igw {(ǫ1.ǫ2)(k2 − k1).ǫ3 + (ǫ2.ǫ3)(k3 − k2).ǫ1 + (ǫ3.ǫ1)(k1 − k3).ǫ2}

Quadrilinear coupling will be products of the 4 polarisation vectors eg. (ǫ1.ǫ2)(ǫ3.ǫ4)

21.3 Local gauge invariance and QCD

As with QED we can infer the structure of QCD from local gauge invariance.
Here we replace U(1) with SU(3) group of phase transformations of colour fields.
The quark fields transform as:

q(x)→ q′(x) = Uq(x)

U = exp

{

iαa(x)
λa

2

}

Where λa are the Gell-Mann matrices (3× 3 linear independent and traceless)
and αa are the group parameters. The SU(3) generators do not commute hence
the theory is non-abelian

[
λi

2
,
λj

2

]

= ifijk
λk

2
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Following the same formalism we impose SU(3) invariance on the free La-
grangian and consider an infinitesimal change.

q(x)→
(

1 + iαa(x)
λa

2

)

q(x)

∂µq(x)→
(

1 + iαa(x)
λa

2

)(

∂µq(x) + i
λa

2
q(x) ∂µαa(x)

)

we then introduce 8 gauge fields, Ga
µ each of which transforms as:

Ga
µ → Ga

µ −
1

gs
∂µαa(x)

and form a covariant derivative:

Dµ = ∂µ + igs
λa

2
Ga

µ

so the Lagrangian becomes:

L = q̄(iγµ∂µ −m)q − gsq̄γ
µλa

2
q Ga

µ

However this is not a gauge invariant Lagrangian, to regain invariance we trans-
form the second term:

q̄γµλa

2
q → q̄γµλa

2
q + iαaq̄γ

µ

(
λa

2
· λb

2
− λb

2
· λa

2

)

q

→ q̄γµλa

2
q − fabcαb

(

q̄γµλc

2
q

)

Gauge invariance will be achieved if the field transforms as:

Ga
µ → Ga

µ −
1

gs
∂µαa(x)− fabcαbG

C
µ

Again, we add the kinetic energy term and the QCD Lagrangian becomes:

L = q̄(iγµ∂µ −m)q − gsq̄γ
µλa

2
q Ga

µ −
1

4
Ga

µνG
µν
a

Alternatively:

L = “qq̄” + “G2” + gs“qq̄G” + gs“G
3” +gs “G4”

Where we have the quark then gluon propagator terms, the quark/anti-quark/gluon
vertex term then tri and quadrilinear gluon coupling terms.
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Chapter 22

Evolution of coupling
“constants”

The self-coupling of gluons leads to a different behaviour of QCD coupling, αs,
with Q2 when compared to QED coupling.

22.1 QED coupling

we normally include loops, i.e. higher order terms, into a process we had previ-
ously calculated

For example: eν scattering has a correction in which there is a virtual
electron-positron loop on the photon line. This diagram is calculable but there
is no restriction on the 4-momenta of the loop particles and so there are an
infinite number of possible loops.

The electron charge, say, becomes dependant on the scale of the process and
has to be renormalised in order to remove the infinities caused by the loops.

The relationship between the measured e2 and the “bare” e2o has to be spec-
ified at a particular Q2. As the coupling is directly related to the charge this
then has a Q2 dependence. The “running coupling constant”, α, is a function
of Q2 given by:

α(Q2) =
α(µ2)

1− α(µ2)

3π
log

(
Q2

µ2

)

where µ2 is the renormalisation scale.
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22.2 QCD coupling

For QCD the couplings derived previously (gluon self coupling etc) also con-
tribute giving:

αs(Q
2) =

αs(µ
2)

1− αs(µ
2)

12π
(33− 2nf ) log

(
Q2

µ2

)



Chapter 23

Spontaneous symmetry
breaking

We want to be able to add mass to our theory of the standard model. The W
and Z bosons are not massless yet we cannot simply add mass ‘by hand’ to the
relevant equations; simply adding terms to the respective Lagrangians breaks
gauge invariance making the theory invalid. To cope with this mass can instead
be generated through spontaneous symmetry breaking. We will consider three
models:

1. Spontaneous symmetry breaking for a scalar field, φ, for which: φ → −φ
is a symmetry

2. A complex scalar field which has a global gauge symmetry (Goldstone
boson)

3. A complex scalar field which has a local gauge symmetry. The electromagnetic-
like field introduced to allow invariance with respect to local gauge trans-
formation cures the Goldstone boson problem and the Aµ field acquires
mass (Higgs model, 1964, next chapter)

23.1 Scalar field

First consider the Lagrangian for a scalar field:

L =
1

2
(∂µφ)2 − (

1

2
µ2φ2 +

λ

4
φ4)

where λ > 0. This Lagrangian is symmetric under the transformation φ→ −φ.
If µ2 > 0, there is a minimum at φ = 0, if µ2 < 0 then the potential has two
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minima (23.1). The φ4 is a self interacting term.

dV

dφ
= 0

= µ2φ+ λφ3

⇒ φmin =

√

−µ
2

λ

≡ ±v

where V is the vacuum expectation of the field.

V =
µ2

2
φ2 +

λ

4
φ4

= λ

(
µ2φ2

2λ
+
φ4

4

)

= −λ
4
v4

Figure 23.1: Potential field V

A perturbative expansion about the minima φ = ±v

⇒ φ(x) = v + η(x)

where η(X) represents quantum fluctuations about this minima.
Substituting this into the Lagrangian:

L =
1

2
(∂µη(x))

2 − (
1

2
µ2(v + η(x))2 +

λ

4
(v + η(x))4) (v is a const ∂µv =

=
1

2
(∂µη)

2 − (
1

2
µ2(v2 + 2vη + η2) +

λ

4
(v4 + 4v3η + 6v2η2 + 4vη3 + η4))

but µ2 = −v2λ

=
1

2
(∂µη)

2 −
{

−1

4
v4λ+ v2λη2 + vλη3 +

1

4
λη4

}
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So now the field η has a mass term of the correct sign. Identifying with the
Klein-Gordon equation mass term, − 1

2m
2φ2, this means that

−λv2 = −1

2
m2

η

⇒ mη =
√

2λv2

=
√

−2µ2

23.2 Complex field

For a complex field,

(φ2
1 + φ2

2) = −µ
2

λ

= v2

This is invariant under

φ′ = eiαφ

ie under a global gauge transformation.
Again for λ > 0, µ2 < 0

L =
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 − 1

2
µ2(φ2

1 + φ2
2)−

λ

4
(φ2

1 + φ2
2)

This is now a circle of minima and we break the symmetry by choosing: φ1 = v
and φ2 = 0 then expand out about the minimum using:

φ(x) =
1√
2
(v + η(x) + iρ(x))

φ(x)→ L

L =
1

2
(∂µφ)∗(∂µφ)− 1

2
µ2φ∗φ− λ

4
φ∗φ

=
1

2
(∂µη)

2 +
1

2
(∂µρ)

2 + µ2η2 · · ·

The third term looks like a mass term of the form − 1
2m

2
ηη

2 with mη =
√

−2µ2

and there is a kinetic energy term for the ρ field but no mass term



154 CHAPTER 23. SPONTANEOUS SYMMETRY BREAKING



Chapter 24

The Higgs model

Again we have the complex field:

1√
2
(φ1 + φ2)

and we want the Lagrangian to be invariant with respect to a local gauge trans-
form. To do this we must introduce the electromagnetic field Aµ and replace
∂µ by ∂µ − ieAµ

⇒ L = (∂µ + ieAµ)φ∗(∂µ − ieAµ)φ− µ2φ∗φ− λ(φ∗φ)2 − 1

4
FµνF

µν

consider µ2 < 0

φ =
1√
2
(v + eta(x) + iρ(x))

≃ 1√
2
(v + eta(x))eiρ(x) 1

v

Note that the exponential represents the local gauge transformation.

⇒ φ→ φ′ =
1√
2
(v + eta(x))eiρ(x) 1

v

Aµ → A′
µ = Aµ +

1

e
∂µ
ρ(x)

v

Breaking the symmetry by choosing ρ(x) = 0 i.e. (using ‘h’ for Higgs rather
than η)

φ =
1√
2
(v + h(x))

⇒ L = (∂µ + ieAµ)
v + h(x)√

2
(∂µ − ieAµ)

v + h(x)√
2

− µ2

[
v + h(x)√

2

]2

− λ
[
v + h(x)√

2

]4

− 1

4
FµνF

µν

=
1

2
(∂µh)

2 − λv2h2 +
1

2
e2v2AµA

µ + · · · − 1

4
FµνF

µν
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So the Lagrangian describes 2 interacting massive particles: a vector gauge
boson Aµ and a massive scalar, h, the Higgs particle

24.1 The Weinberg formulation of the Higgs Mech-
anism for SU(2) ⊗U(1)

Weinberg chose a weak isospin doublet of complex scalar fields with hypercharge
+1

T3 Q Y

φ =

(
φ†(x)
φ0(x)

)
+ 1

2 1 +1
− 1

2 0 +1

φ†(x) =
φ1 + iφ2√

2

φ0(x) =
φ3 + iφ4√

2

The above scalar field was required to be invariant under local gauge trans-
formation in the weak hypercharge space of the electroweak interaction. The
doublet transforms as:

(
φ†(x)
φ0(x)

)

→
(
φ†(x)
φ0(x)

)′

= exp

{

igwα(x)
τ

2
+ ig′β(x)

Y

2

}(
φ†(x)
φ0(x)

)

⇒ L =

∣
∣
∣
∣

(

∂µ − gwα(x)
τ

2
− g′β(x)

Y

2

)

φ

∣
∣
∣
∣

2

− µ2φ∗φ− λ(φ∗φ)2

Weinberg broke the symmetry by setting:

1√
2

(
φ†(x)
φ0(x)

)

=
1√
2

(
0

v + h(x)

)

From experience Boson masses have come from the gauge terms in the Dµ

operation

=

∣
∣
∣
∣

[
g′

2

(
1 0
0 1

)

Bµ +
gw

2

{(
0 1
1 0

)

W 1
µ +

(
0 i
−i 0

)

W 2
µ +

(
1 0
0 −1

)

W 3
µ

}]
1√
2

(
0
v

)∣
∣
∣
∣

2

=
1

8

∣
∣
∣
∣

(
gwW

3
µ + g′Bµ gw

(
W 1

µ + iW 2
µ

)

gw

(
W 1

µ − iW 2
µ

)
−gwW

3
µ + g′Bµ

)(
0
v

)∣
∣
∣
∣

2

=
{
v2g2

w

(
W 1

µ − iW 2
µ

) (
W 1

µ + iW 2
µ

)
− v2(g′Bµ − gwW

3
µ)(g′Bµ − gwW

µ
3 )
}

the first term can be re-arranged as follows:

=
1

8

√
2
√

2 v2g2
w

(

W 1
µ − iW 2

µ√
2

)(

W 1
µ + iW 2

µ√
2

)

=
1

4
v2g2

wW
+W−
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Comparing this with the mass term expected for a charged boson

M2
WW+W− =

1

4
v2g2

wW
+W−

⇒MW =
gwv

2

Using the second term we get:

=
1

8
v2(g2

w + (g′)2)

(

g′Bµ − gwW
3
µ

√

g2
w + (g′)2

)(

g′Bµ − gwW
µ
3

√

g2
w + (g′)2

)

=
1

8
v2(g2

w + (g′)2)ZµZ
µ +mAAµA

µ

Zµ =
g′Bµ − gwW

µ
3

√

g2
w + (g′)2

Aµ =
g′Bµ + gwW

µ
3

√

g2
w + (g′)2

⇒ mA = 0

⇒ mZ =
1

2
v(g2

w + (g′)2)
1
2

also

g′ = tan θw

as MW =
vgw

2

⇒MZ =
MW

cos θW

Relative strength of the charged and neutral current interactions.

ρ =
M2

W

M2
Z cos2 θw

is predicted to be 1, it is measured to be close to one but is modified by loop
effects.

24.2 Coupling of Higgs to the W and Z

We insert:

φ =

(
0

v + h

)
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into the Lagrangian and look at the Dµ term

=
1

8

∣
∣
∣
∣

(
gwW

3
µ + g′Bµ gw

(
W 1

µ + iW 2
µ

)

gw

(
W 1

µ − iW 2
µ

)
−gwW

3
µ + g′Bµ

)(
0

v + h

)∣
∣
∣
∣

2

=
{
(v + h)2g2

w

(
W 1

µ − iW 2
µ

) (
W 1

µ + iW 2
µ

)
− (v + h)2(g′Bµ − gwW

3
µ)(g′Bµ − gwW

µ
3 )
}

the WH coupling is

1

8
g2

w

{

(v2 + 2vh+ h2)
√

2W+
√

2W−
}

so here we can see the trilinear, WWH, and quadrilinear, WWHH, coupling.
WWH coupling:

=
1

8
g2

w.2vh.
√

2W+
√

2W−

=
1

2
g2

wvhW
+W−

= g2
wMWW+W−

for WWHH coupling:

=
1

8
g2

w.h
2.
√

2W+
√

2W−

=
1

4
g2

wh
2W+W−

for Z0 consider the remaining terms of the Lagrangian

24.3 Fermion masses

In the Weinberg formulation, the scalar field who’s symmetry is broken has
hypercharge +1 and allows a possible mechanism for giving masses to fermions.
The scalar field, φ, can be used to generate masses by connecting singlet and
doublet states.

L = Ge

[
1√
2
(ν̄e, ē)L

(
0

v + h

)

eR +
1√
2
ēR(0, v + h)

(
νe

e

)

L

]

=
Ge√

2
v(ēLeR + ēReL)− Ge√

2
(ēLeR + ēReL)h

Choose Ge such that

me =
Ge√

2

and hence generate the electron mass:

L = −meēe−
me

v
ēeh
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Ge is arbitrary and so me is not predicted by this method.

d-quark mass can be generated in the same way and for the u-quark we
break the symmetry by choosing:

φ =

(
v + h

0

)

We choose this because u has opposite hypercharge. Then a right-handed singlet
u quark can be connected to the left-handed doublet state u quark. Again this
gives a Dirac-like mass term.

Generalise this for quark masses, we start with the weak eigenstates.

The mass is generated by d̄′LMdd
′
R where d represents any d-type quark and

Md is a 3× 3 matrix, similarly for u-type quarks ū′LMuu
′
R.

Now consider the relationship between the weak and massive eigenstates

uL = Uu
Lu

′
L dL = Ud

Ld
′
L

uR = Uu
Ru

′
R dR = Ud

Rd
′
R

Where U
u/d
L/R are unitary 3× 3 matrices

⇒ ū′LMuu
′
R = ūL U

u
LMuU

u†
R

︸ ︷︷ ︸

M

uR

Where M is a diagonal matrix of the quark masses. Recall the nature of the
charged current for quarks, first in terms of the weak eigenstates:

(ū′, c̄′, t̄′)
1

2
γµ(1− γ5)





d′

s′

b′





and now in terms of the mass eigenstates:

(ū, c̄, t̄)Uu
L

1

2
γµ(1− γ5)Ud†

L





d
s
b





In the weak interaction we have VCKM = Uu
LU

d†
L and the CKM matrix is related

to these transformations which give quarks their mass.
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24.4 The cosmological problem

We recall that the Higgs ‘well-depth’ is

V0 =
−λv4

4

v =
2Mw

gw

g2
w =

GF 8M2
W√

2

⇒ v =
2

√

8GF√
2

= 246 GeV

⇒ V0 ≃ −λ× 1× 109 GeV4

≃ −λ× 1× 109 × 1.3× 1041

≃ −λ× 1.3× 1050 GeV cm−3

The visible density of the universe is∼ 1 proton per cubic meter, i.e. 10−6 GeV cm−3,
this needs to be ×20 to account for dark energy and dark matter. Therefore
the density in the Higgs field is λ× 1055 larger than that in the universe.



Chapter 25

Grand Unification

The electroweak, SU(2)⊗U(1) is in impressive agreement with experimental
data. However the theoretical unification is not complete the SU(2) group has
coupling strength, g, and the U(1) has coupling strength, g′, the relation of the

two not being predicted by the theory. The ratio: g′

g = tan θw, is determined by
experiment. Only if there is a larger set of gauge transformations which embed
g and g′ can it be said that electromagnetism and the weak interaction are truly
unified. We can also consider the strong force and create a Grand Unification
Theory (GUT):

G or SU(5) ⊃ SU(3)⊗ SU(2)⊗ U(1)

Where we have one coupling constant i.e. that the coupling constant of each of
the forces at some scale are equal. Knowing the values at low energies and their
variation with energy the scale that this is likely to happen at is

MGUT ∼ 1015 GeV

The simplest form of the SU(5) group has been eliminated through analysis
of various decays. It could still be valid as part of another scheme such as
SO(10). In SU(5) the down quarks and the anti-leptons doublet are combined
into a quintuplet:









dR

dG

dB

e+

ν̄e









To allow local gauge transformations on the quintuplet fields have to be intro-
duced. Combined with their corresponding 5× 5 generators. The SU(5) has 24
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independent generators which are combined with 24 fields.









· · · · ·
· SU(2) · a ·
· · · · ·
· b · SU(2) ·
· · · · ·

















dR

dG

dB

e+

ν̄e









regions a and b can change leptons into quarks and vise versa. There are 12 new
gauge bosons, normally represented by X and Y, which allow for lepton-quark
transitions, QX = ± 4

3 and QY = ± 1
3

The charge generator, Q, must be a linear combination of the diagonal gen-
erators in SU(5)

Q = T3 +
Y

2
= T3 + cT0

where T3 (isospin) and T0 are the diagonal generators of SU(5) belonging to
SU(2) and U(1) subgroups. The coefficient c relates the operators Y and T0, it

has a value of
√

5
3 . The diagonal generator is then:

M =

√

3

5









− 2
3 · · · ·
· − 2

3 · · ·
· · − 2

3 · ·
· · · 1 ·
· · · · 1









TrM2 = 2δij

⇒ 2 = N2(
4

9
+

4

9
+

4

9
+ 1 + 1)

⇒ N =

√

3

5

The unified coupling constant is g5, where g5 = gW and g5 = gs but g′ =
√

3
5g5 =

√
3
5gw but

g′ cos θW = gw sin θW

⇒ tan θW =

√

3

5

at unification energy.

Devolving back to low energies shows that the theory (tan θW )GUTscale =
√

3
5 does not quite match the data. The evolution of the coupling to low energies
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can be predicted:

1

α3(Q2)
=

1

α3(M2)
+

1

4π
(11− 2

3
ng) ln

(
Q2

M2

)

1

α2(Q2)
=

1

α2(M2)
+

1

4π
(
22

3
− 4

3
ng) ln

(
Q2

M2

)

1

α1(Q2)
=

1

α1(M2)
+

1

4π
(−4

3
ng) ln

(
Q2

M2

)

Where ng is the number of generations. In fact the coupling constants do not

Figure 25.1: evolution of coupling constants under SM and GU theories

meet at the GUT scale (25.1, also had they done so at 1015 GeV this would
have meant that protons decay with a lifetime that is measurable. This could
be evidence for SUSY i.e. each boson has a fermion partner and vise versa, such
particles would slow down evolution of the coupling constants.
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Chapter 26

Neutrino masses and
mixing

As discussed previously a discrepancy was observed between measured and ex-
pected numbers of electron neutrinos arriving at the Earth from the Sun. The
required new phenomenology can be made to be consistent with SU(2)⊗U(1)
broken gauge symmetry of the standard model. We take it that (anti) neutrinos
are distinct Dirac fermions.

That neutrinos have mass was a major discovery: the only physics beyond
the standard model. Violation of lepton flavour has consequences for its conser-
vation in other circumstances.

The most general Lorentz invariant neutrino mass term that can be intro-
duced to the Lagrangian density is:

Lν
mass(x) = −

∑

α,β

ν†αL(x)mαβνβR +Hermitian constants

Where mαβ is an arbitrary 3× 3 matrix, α and β run over the 3 neutrino types
(e, µ, τ) and ναL(x) and νβR(x) are the left and right handed spinors.

We can write

mαβ =
∑

i

UL
αimiU

R
βi

where mi are 3 real positive masses and UL
αi and UR

βi are unitary matrices.

We now define the fields:

νiL(x) =
∑

α

UL
αiναL(x)

νiR(x) =
∑

α

UR
αiναR(x)
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where i indicates mass eigenstates and α the flavour eigenstates The mass terms
takes the standard Dirac form:

Lν
mass(x) =

∑

i

mi(ν
†
iLνiR + ν†iRνiL)

The transformations return the Dirac form of the dynamical terms

Lν
dyn(x) =

∑

i

i(ν†iLσ̂
µ∂µνiL + ν†iRσ̂

µ∂µνiR)

and Lν
dyn(x) + Lν

mass(x) is the Lagrangian density of free neutrinos of masses
m1,m2,m3.

Since UL and UR are unitary:

ναL(x) =
∑

i

UL∗
αi νiL(x)

ναR(x) =
∑

i

UR∗
αi νiR(x)

since neutrinos (e, µ, τ) each have a combination of the neutrino masses we get
the phenomena of neutrino mixing.

This modifies eg τ(π− → e−ν̄e) which becomes:

1

τ(π− → e−ν̄e)
=
α2

π

4π

(

1− ve

ℓ

)

p2
eEe|V 2

ei|2 (i = 1, 2, 3)

As the mass differences are small the different decay modes have not been seen.
As a total decay rate is measured and

∑

i V
L
ei = 1 we recover the original

expression.
We have:

iσ̂µ∂µναL −mαβνbetaR = 0

iσ̂µ∂µναR −m∗
αβνbetaL = 0

Zero mass neutrinos would have plane wave solutions of negative helicity, for a
wave in the z-direction:

ναL(z, t) = e−iE(t−z)fα

(
0
1

)

ναR = 0

where fα are constants.
Introducing the neutrino mass modifies these solutions:

ναL(z, t) = e−iE(t−z)fα(z)

(
0
1

)

ναR(z, t) = e−iE(t−z)yα(z)

(
0
1

)
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substituting into the Dirac equation:

i
d

dz
fα(z)−Mαβgβ(z) = 0

(2E − i d
dz

)gγ(z)−m∗
αγfα(z) = 0

For energies much greater than the masses we can neglect the −i d
dz gγ(z) term

compared to 2Egγ(z)

∴ gγ(z) =
m∗

αγfα(z)

2E

and we then have:

i
d

dz
fβ(z) = Mβγm

∗
αγ

fα(z)

2E

Diagonalising the mass matrices gives:

i
d

dz
fβ(z) = UL∗

βi U
L
αifα(z)

m2
i

2E

to solve, we construct linear combinations (ignore L superscript on U terms)

fi(z) = Uαifα(z)

⇒ i
d

dz
fi(z) = iUαi

d

dz
fα(z)

= iUαiU
∗
αjUβj

M2
j

2E
fβ(z)

= δijUβj

m2
j

2E
fβ(z)

=
m2

i

2E
fβ(z)

These have simple solutions

fi(z) = e−i
M2

i
2E

zf(0)

so the neutrino wave function is

νi(z, t) = e−iEt+i
(E−M2

i )

2E
zfi(0)

The state has energy, E, and momentum, pi = E − m2
i

2E . For m2
i ≪ E2, p2

i =
E2 −m2

i

at z = 0 a neutrino, type α, is created. The neutrino wavefunction, να, is a
linear superposition of mass eigenstates νi with

fi(0) = Uαifα(0)
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different eigenstates propagate with different phases so that the neutrino type
changes with z

fβ(z) = U∗
βifi(z)

= U∗
βie

−i
−m2

i
2E

zUαifα(0)

the probability of a transition after distance, D, is PD(να → νβ)

PD(να → νβ) = |U∗
βie

−i
−m2

i
2E

zUαi|2

=
∑

ij

U∗
βiUαiUβjU

∗
αje

−i
∆m2

ijD

2E

under interchange of i and j, Re(U∗UUU∗) is symmetric and Im(U∗UUU∗) is
anti-symmetric

∴ PD(να → νβ) = δαβ − 4
∑

i>j

Re
{
U∗

βiUαiUβjU
∗
αj

}
sin2

(

∆m2
ijD

4E

)

+ 2
∑

i>j

Im
{
U∗

βiUαiUβjU
∗
αj

}
sin2

(

∆m2
ijD

2E

)

in the Weinberg-Salam model right-handed neutrinos exist as SU(2) singlets.
Masses are introduced as for u-type quarks by coupling to the Higgs field.

So far we have considered neutrinos as Dirac particles but they could be
Majorana i.e there is no distinction between neutrinos and anti-neutrinos so:

νR = (iσ2)ν∗L

νL = −(iσ2)ν∗R

so either field can be derived from the other and only one needs to appear in
the theory.

Neutrino-less double beta decay 0νββ

(A,Z)→ (A,Z + 2) + 2e−

This is a process that can be used to determine whether neutrinos are Majorana
or not, 0νββ can come from a variety of sources, however its observation would
imply that nature contains at least one Majorana term and then the neutrino
mass eigenstates must be the Majorana neutrinos.


