

Outline

- Why top quark?
- The tools of the trade
- LHC: a top factory at work
- The ATLAS and CMS detectors: top observers
- Measuring top quark production
- top pair
- single top
- Top Properties
- Top mass
- Angles: spin correlations (production)
- Top pair production as a window on new physics
- Resonances in tt

Standard (model) successes

 a quick (biased) selection..
 Top quark is found

Standard (model) questions

- What is the origin of mass?
- How is gravity incorporated?

- Why different forces (ranges, strengths)?
- What accounts for the energy balance of the universe?

Standard (model) questions

-What is the origin of mass?
Higgs, SuperSymmetry, New Strong forces..

- Why 3 generations with different quantum numbers?

4th generation...?

- How is gravity incorporated?
Quantum gravity
Extra dimensions...
- Why different forces (ranges, strengths)?

String theory..

- What accounts for the energy balance of the universe?

Dark matter, Dark energy...

Standard (model) questions

-What is the origin of mass?

Higgs, SuperSymmetry, New Strong forces..

Why 3 generations with different quantum numbers?

4th generation...?

- How is gravity incorporated?
Quantum gravity
Extra dimensions...

- Why different forces (ranges, strengths)?

String theory..

- What accounts for the energy balance of the universe?

Dark matter, Dark energy...

From bottom to top: a history of expectations One needs top because
b couples to s only with
No flavour changing neutral currents: no
b iso-singlet

$I_{3}=-1.2$ for b quark
required by Z width in bb
decay. Need additional
quark, isospin partner of
b, with $I_{3}=+1.2$

No triangular fermion loops anomalies i.e. additional quark required for lept.-ferm. cancellation

$$
\begin{aligned}
& \sim \sum_{L} I_{3 A} Q^{2}=-\sum_{L} I_{3}\left[I_{3}+\frac{1}{2} Y\right]^{2} \\
& \sim \sum_{L} Y \sim \sum_{L} Q
\end{aligned}
$$

From bottom to top: the global picture

Most massive constituent of matter

$M_{\text {top }} \sim$ electroweak symmetry breaking scale $\mathbf{M T o p}^{\text {M Gold Atom }}$

Various scenarios with direct/indirect coupling to new physics:
from extra dimensions to new strong forces

Bunch

$$
\frac{\prod_{1} \text { N2 }}{\sigma^{2}} \quad \begin{aligned}
& \frac{\text { Key parameters: }}{N_{i}=\text { bunch intensity }} \\
& n_{b}=\text { number of bunches } \\
& \sigma=\text { colliding beam size }
\end{aligned}
$$

$N_{\text {events }}(\Delta t)=\int L d t{ }^{*}$ cross section
counter-rotating high intensity proton bunches colliding at center of mass energy (E_{cm}) = $\mathbf{7} \mathbf{~ T e V}$ in $\mathbf{2 7} \mathbf{K m}$ tunnel
$E_{c m}($ Tevatron $)=1.96 \mathrm{TeV}$
$\mathcal{L} \propto \frac{\aleph_{1} N_{2} n_{b}}{\sigma^{2}} \quad \begin{aligned} & { }^{\prime} N_{i}=\text { barameters: } \\ & n_{b}=\text { number intensity } \\ & \sigma=\text { colliding beam size }\end{aligned}$

$$
\mathrm{E}_{\mathrm{cm}}=7 \mathrm{TeV}
$$

- peak instantaneous luminosity:2 10^{32} $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$
- delivered integrated luminosity $50 \mathrm{pb}^{-1}$
eventually: $\mathrm{E}_{\mathrm{CM}}=14 \mathrm{TeV}$ (7 TeV per beam, design value) 2011

```
                                    Eom=7 TeV
```


Plans

peak /umi 0.5 to $1: 10^{38} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

SLed between 1 and $3 \mathrm{fb}^{-1 /} / \mathrm{exp}$

run , parameters depend on 2011 perf.

$N_{\text {events }}(\Delta t)=\int L d t$ * cross section

Top quark @ LHC: production(I)

$$
\sigma^{t \bar{t}}\left(\sqrt{s}, m_{\mathrm{t}}\right)=\sum_{i, j=q, \bar{q}, g} \int \mathrm{~d} x_{i} \mathrm{~d} x_{j} f_{i}\left(x_{i}, \mu^{2}\right) \bar{f}_{j}\left(x_{j}, \mu^{2}\right) \hat{\sigma}^{i j \rightarrow t t}\left(\rho, m_{\mathrm{t}}^{2}, x_{i}, x_{j}, \alpha_{s}\left(\mu^{2}\right), \mu^{2}\right)
$$

	LHC(14)	LHC(7)	$\operatorname{Tev}(1.9)$
gg	$\sim 90 \%$	$\sim 85 \%$	$\sim 10 \%$
qq	$\sim 10 \%$	$\sim 15 \%$	$\sim 90 \%$

To produce tt

$$
\left.\hat{s} \geq 4 m_{\mathrm{t}}^{2} \square\right\rangle x_{i} x_{j}=\hat{s} / s \geq 4 m_{\mathrm{t}}^{2} / s
$$

$\mathrm{f}_{\mathrm{i}}(\mathrm{x})$ falls with larger $\mathrm{x} \boldsymbol{\checkmark}$ typical $x_{i} x_{j}$ near

$$
\begin{aligned}
& x \approx \frac{2 m_{\mathrm{t}}}{\sqrt{s}}=0.19 @ \text { Tevatron } \sqrt{ } \mathrm{s}=1.8 \mathrm{TeV} \\
& 0.18 @ \text { Tevatron } \sqrt{ } \mathrm{s}=1.96 \mathrm{TeV}_{\text {, }}, \\
& 0.048(0.025) @ \text { LHC with } \sqrt{ } \mathrm{s}=7(14 \mathrm{TeV})
\end{aligned}
$$

Top quark @ LHC: production probe low x in pdfs \rightarrow gluon fusion dominated
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">Tevat</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">LHC(7)</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">LHC(14)</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">gg</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$\sim 10 \%$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$\sim 85 \%$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$\sim 90 \%$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">qq</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$\sim 90 \%$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$\sim 15 \%$</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$\sim 10 \%$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| | Tevat | LHC(7) | LHC(14) |
| :---: | :---: | :---: | :---: |
| gg | $\sim 10 \%$ | $\sim 85 \%$ | $\sim 90 \%$ |
| qq | $\sim 90 \%$ | $\sim 15 \%$ | $\sim 10 \%$ |</table-markdown></div>

 top pairs: strongAliev et al 2011
Beneke et al 2010 Langefeld Moch

Uwer 2009
Moch, Uwer 2008

$\sigma=165^{+11}-16 \mathrm{pb}$

Wt chan

$\sigma=15.7^{+1.3}{ }_{-1.4} \mathrm{pb}$
$\sigma=4.6 \pm 0.3 p b$

s chan

$$
\sigma=64^{+3}-3 p b
$$

single top:
electroweak

Kidonakis 2010

Top @ LHC: in the context

proton - (anti)proton cross sections

- High P_{t} jets
-b-jets
- 1 to 2 high $\mathrm{Pt}_{\text {t leptons }}$
- Missing energy

Top signatures
di-lepton
$t \bar{t}$ decays
$\ell v \sim 32.4 \%$
qq $\sim 67.6 \%$
bkgs_single_t: tt +some bkgs_tt
HEP intercollegiate Post Graduate Lectures

ATLAS \& CMS: Top observers

3 (ATLAS) or 2(CMS) trigger

	ATLAS	CMS
Magnetic field	2 T solenoid + toroid (0.5 T barrel 1 T endcap)	4 T solenoid + return yoke
Tracker	$\begin{aligned} & \text { Si pixels, strips + TRT } \\ & \sigma / p_{T} \approx 5 \times 10^{-4} p_{T}+0.01 \end{aligned}$	Si pixels, strips $\sigma / p_{T} \approx 1.5 \times 10^{-4} p_{T}+0.005$
EM calorimeter	$\begin{aligned} & \mathrm{Pb}+\mathrm{LAr} \\ & \sigma / E \approx 10 \% / \mathrm{VE}+0.007 \end{aligned}$	PbWO4 crystals $\sigma / E \approx 2-5 \% / V E+0.005$
Hadronic calorimeter	$\begin{aligned} & \text { Fe+scint. / Cu+LAr/W+LAr (10 } \lambda \text {) } \\ & \sigma / E \approx 50 \% / \mathrm{VE}+0.03 \mathrm{GeV} \text { (central) } \end{aligned}$	Cu+scintillator ($5.8 \lambda+$ catcher)/Fe+quartz fibres $\sigma / E \approx 100 \% / V E+0.05 \mathrm{GeV}$
Muon	$\sigma / \mathrm{p}_{\mathrm{T}} \approx 2 \%$ @ 50 GeV to 10\% @ 1 TeV (ID+MS)	$\sigma / \mathrm{p}_{\mathrm{T}} \approx 1 \%$ @ 50 GeV to 5% @ 1 TeV (ID+MS)
Trigger	L1 + Rol-based HLT (L2+EF)	L1+HLT (L2 + L3)
francesco.spano@cern.ch	Top Quark @ LHC HEP inte	e Post Graduate Lectures -15th Nov 201117

ATLAS and CMS: Top observers.....

Top events are real commissioni tool: full detector at play!!
...with excellent data taking performance

2011
 ATLAS (2010)
Total Recorded (Delivered) Lumi:

$$
45.0 \text { (48.1) pb-1 }
$$

Lumi uncertainty $\sim 3.4 \%$

Analyses use $36 \mathrm{pb}^{-1}(2010)$ and 0.2 to $1.14 \mathrm{fb}^{-1}$ (2011) 2011

CMS (2010)
Total Recorded (Delivered) Lumi: 47.03 (43.17) pb-1 Lumi uncertainty 4%

Ingredients I : leptons
$A=A T L A S, C=C M S$

Electrons

- (A) E scale from data known at 0.3 to $\mathbf{1 . 6 \%}$ up to 1 TeV (C) ECAL scale known at level of 0.6% to 1.5%
- isolated central*combination of shower shape , track/calo-cluster match (correct for Bremsstrahlung, veto conversions)
- $\left|\eta_{\text {cluster }}\right|<2.4$ (A) or $2.5(\mathrm{C})$, $\mathrm{pt}^{2}>25(\mathrm{~A})$ or $30(\mathrm{C}) \mathrm{GeV}$
- remove duplicate close-by ($\Delta R<0.2$) jets (A) or reco objects (with Particle Flow(PF))

- Muons

> ${ }^{\text {t }}$ scale known at $\approx<1 \%$

- isolated central combined fitted track from primary vertex
$*\left|\eta_{\text {track }}\right|<2.5(A)<2.1(C)$, pT $^{2}>20 \mathrm{GeV}$
*suppress heavy flavour decays: no μ with $\Delta R<0.4$ (A) or 0.3 (C) from a jet
scale factors to correct small data/MC mismatch

Ingredients II : jets

-Reco: particle flow objects (C) or 3d calo clusters $(A) \rightarrow \mathbf{a n t i}-\mathbf{k}_{\mathbf{T}}$ algorithm (R=0.4(A),0.5(C))

- рт > 25(A) or 30(C) GeV
- $\left|\eta_{\text {jet }}\right|<2.4(A)$ or $2.5(C)$
- Calibrate jet energy scale with ($\eta, \mathrm{P}_{\mathrm{T}}$) dependent weight from simulated "true" jet kinematics+ pile-up offset correction
- Scale uncertainty: between 2% to 8% in $\boldsymbol{p}_{\boldsymbol{t}}$ and η
- Contributions from physics modelling, calo response, det simulation
- in-situ validation

Ingredients III: missing transverse energy (ETmiss)

$$
A=A T L A ́ S, C=C M S
$$

- Negative vector sum of
- A: energy in calorimeter cells, projected in transverse plane associated with high pt object + $\boldsymbol{\mu}$ mom. + dead material loss
- C: energy/momentum from 1) PF particle flow objects or 2) Calo towers $+\mu$ or 3) TC: Track +Calo, 㥯 no double counting
projected in transverse plane

- Cells/towers/tracks are calibrated according to association to high p^{2} object (electron, photon,tau, jet, muon)

Selecting top pairs - single lepton

- Trigger on high pt single lepton $^{\text {sin }}$ (e, μ)
- Good collision and no jet from noise/ out-of-time activity
$\bullet \geq 1$ high p_{T} central lepton, reject dileptons
- A: exactly one lepton
, C: ≥ 1 electron, reject if $|m(e e)-M z|<15$ GeV for any ee pair, no lower $p_{T} \mu$ OR only one μ, no lower $E_{T} e$
$\bullet \geq 3$ central high p_{T} jets
- A: high E_{T} miss and large transverse leptonic \mathbf{W} mass $\left(\mathrm{MT}^{\mathrm{W}}\right)^{*}$ to reduce QCD bkg
- $E_{T}{ }^{\text {miss }}>35$ (25) GeV for e (μ) chan
- $M_{T}{ }^{W}>25 \mathrm{GeV}\left(60 \mathrm{GeV}-E_{T}{ }^{\text {miss }}\right)$ for e (μ) chan

$\sigma_{\mathrm{tt}}-$ single lepton
- Build discriminant from signal+ bkg templates of
- A: lepton η, $\mathrm{p}_{\text {т }}$ of highest $\mathrm{p}_{\text {т }}$ jet aplanarity (\leftarrow top is more spherical), $\mathrm{H}_{\mathrm{t}, 3 \mathrm{p}}$, ratio of transverse to longitudinal activity (\leftarrow top is more transverse)
- C: ET ${ }^{\text {miss }}$ for 3-jet bin (vs QCD), M3 for \geq 4-jet bin, mass of 3-jet system with highest vectorially combined p_{T}
- Extract $\sigma_{\mathrm{tt}}, \sigma_{b k g}$ by binned likelihood fit of discriminant to data in $A: 3,4$ and ≥ 5-jet bins, C : 3 and ≥ 4-jet bins

σ_{tt} and syst. uncertainties - single lepton

- most syst uncertainties part of lkl fit as Gaussian nuisance parameters \rightarrow reduction in JES,ISR/FSR (20% to 70% of initial value)
- still syst-dominated: generator ~3\% lepton scale~2\%
- $\delta \sigma / \sigma=6.6 \%$ (stat~0.5\%, sys~5\%)
-syst included in pseudo exp to derive Neyman CL belt for max Ikl fit
- syst-dominated (JES~18\%, factorization scales~7\%)
- $\delta \sigma / \sigma \sim 23 \% ~(s t a t \sim 8 \%, ~ s y s ~ 21 \%) ~$
- A: (1) jet prob from track impact parameter (IP) (2) 3D decay length significance of sec. vertex (SV) (3) Neural net with 1), 2) + mass of SV tracks + N Ntrack vertices + Esv(tracks)/Epv(tracks)
- C:(1) 3D SV decay length significance (\& $N_{\text {tracks }}>3$) (2) track IP signif. $\& \geq 2$ or 3 high IP signif. tracks
- Efficiency: fit fraction of b-jets in sample with muons in jets, count \# b-tagged
- Mis-tag rate: from SV properties (invariant mass of tracks (A), rate of negative decay length / impact par significance (A,C))

Efficiency/mis-tag : from 80\%/10\% (track/NN based) to 40\%/0.1\% (SV based) p_{T} dependent scale factors to correct MC

$\sigma_{\mathrm{tt}}-$ single lepton with b-tag $A=A T L A S, C=C M S$

$$
\begin{aligned}
\int L d t= & \mathbf{3 6} \mathbf{~ p b}^{-1}(\boldsymbol{A})(2010) \mathbf{0 . 8} \text { to } \\
& \mathbf{1 . 1} \mathbf{f b}^{-1}(\boldsymbol{C})(2011)
\end{aligned}
$$

- Standard single lepton selection + large E_{T} miss and $\mathrm{M}_{\mathrm{T}} \mathrm{W}$

C

$\bullet \geq 1$ b-tagged central high p_{T} jet Max lkl fit to secondary vertex mass in 2d plane of ($\mathrm{N}_{\text {jet }}, \mathrm{N}_{\mathrm{b} \text {-jet }}$) $\sigma_{\mathrm{tt}}=164.4 \pm 2.8$ (stat.) ± 11.9 (syst.) ± 7.4 (lum.) ठб/б~9\%

A

- Max Ikl fit of 4-variable discriminant
- replace leading jet pт with average of two largest jet b-tagging probability (- top has more b-jets)

$$
\frac{\sigma_{\mathrm{tt}}=\mathbf{1 8 6} \pm 10 \text { (stat) } \pm{ }^{21-20} \text { (syst) } \pm 6 \text { (lumi) pb }}{\delta \sigma / \sigma \sim 13 \%}
$$

A,C: Syst uncertainties fitted as nuisance pars in profile |k|

Selecting top pairs : di-lepton

- Vertex and quality cuts
- After single (A,C) lepton and di-el (C) trigger (A), exactly (A) or at least (C) two opposite sign high p_{T} central leptons (ee, e $\mu, \mu \mu$)
- $\geq \mathbf{2}$ central high рт jet $^{\text {jet }}$
- High Eтmiss for (ee, $\boldsymbol{\mu} \boldsymbol{\mu}$) (at least >30 GeV or transverse activity (ep)
- $H_{T}=\sum_{\text {eets,lepts }}\left|p_{T}\right|(A)$ or $\sum_{\text {lept }}$ transv. mass(C)
- for (ee, $\mu \mu$) veto low di-lep mass (<15(A), 12(C) GeV) \& Z-like(mass window) events
- if ≥ 1 b-tag, relax $E_{T}^{\text {miss }}$
(2011) $\mathrm{fLat}=\mathbf{0 . 7} \mathbf{~ p b}^{\mathbf{- 1}}(\boldsymbol{A})$,
$1.14 \mathrm{fb}^{-1}(\mathrm{C})$

CMS-TOP-11-005 NEW!
Backgrounds
Z/ ${ }^{*}+j$ jets
QCD, Di-bosons single lepton

Di-lepton $\sigma_{t t}$ - main backgrounds
A=ATLAS, C=CMS
(2011) $\mathrm{JL} d t=\mathbf{0 . 7} \mathbf{p b}^{-1}(\mathbf{A}), \mathbf{1 . 1 4} \mathbf{f b}^{-1}$ (C)

- "Fake" leptons from data
- Get probability for loose "fake" (A, C) and real (A) leptons to be in signal region $(A) \leftarrow$ control samples enriched with real (in Z window) or "fake" (low $\mathrm{ET}^{\text {miss }}$) leptons (A), multi-jet single loose lepton sample (C)
- Combine with N(di-lep) for all loose/tight pairs (A) or only loose pair (fail tight) (C) \rightarrow fake tight (i.e. signal) lep
- $\mathrm{Z} / \mathrm{\gamma}^{*}$ bkg (ee, $\mu \mu$) : scale non-Z/ γ^{*}-bkg-subtracted data in Z-mass window control region with ratio of $N\left(Z / \gamma^{*}\right)$ in signal region to control region from simul.

≥ 1-btag	
e $\mu(\mathrm{A})$	eน(C)
666	1487
68	141
734	1628
823	1742

Di-lepton $\sigma_{t t}$ results

- Include estimated background

- Cross section from likelihood fit combining channels and including systematics as nuisance parameters

A

distributions
after all cuts,
except $\mathrm{N}_{\text {jets }}$
SySt
dominated!
JES~5\% (A),
b-tag~4-5\% (A-tag,C)
C: pile-up~5\%,lep sel~4\%
A:ISR~2.6\%

Combined top pair cross section results

ATL-CONF-2011-108
ATLAS Preliminary, $=7 \mathrm{TeV}$

L+jets w/o b-tagging $\quad \sigma=179 \pm 3.9 \pm 9.0 \pm 6.6 \mathrm{pb}$ $\left(\right.$ (Ldt $\left.=0.7 \mathrm{fb}^{-1} 2011\right)$
$\mathrm{CMS}, \sqrt{\mathrm{s}}=7 \mathrm{TeV}, 36 \mathrm{pb}^{-1}$
arxiv. 1108.3773

$$
\left(\left(\operatorname{Ldt}=1.14 \mathrm{fb}^{-1} 2011\right) \text { dilepton } \sigma=169.9 \pm 3.9 \pm 16.3 \pm 7.6 \mathrm{pb}\right.
$$

$$
\text { NEW! (} \left.\mathrm{Ldt}=0.8 \text { to } 1.1 \mathrm{fb}^{-1} 2011\right) \quad L+j e t s+b t a g \quad \sigma=164.4 \pm 2.8 \pm \mathbf{1 1 . 9} \pm 7.4 \mathbf{~ p b}
$$

- Combined uncertainty is $\boldsymbol{\sim 1 0 \%}$ dominated by systematics. Comparable to theory
- ATLAS: $176 \pm{ }^{5+13}{ }_{-10}+7 \mathrm{pb}$
-CMS : $154 \pm 10^{+17}-17+6 \mathrm{pb}$

$\sigma_{\mathrm{t}}-$ Single top -t chan $\quad \int L a t=0.7 \mathrm{fb}^{-1}(\boldsymbol{A})(2011), \sim \mathbf{3 6} \mathrm{pb}^{-1}(\mathbf{C})(2010)$

 t-chan: qlub(b)- Exactly 1 high $\mathbf{p t}_{\mathbf{T}}$ central lepton (e, μ), high ETmiss (A) and $\mathrm{MT}^{\mathrm{W}}(\mathrm{A}, \mathrm{C})$, require exactly $2(A, C)$ or 3 jets (A) in $|n|<4.5(A)$ or 5(C)
- 2 samples: pre-tag, 1 b-tag (A,C),>=1b-tag (C)
- QCD and W+jets norm from data
- C: combine 2 results: 2D-max lkl fit to lepton-untagged jet angle \& η of untagged jet + Bayesian estimate from BDT
- A: cut/count on angular jet var.,top mass and $\mathbf{H}_{\mathbf{T}}$, confirmed by max Lkl fit to neural network discriminant (13 var.)
syst dominated!

Y Peters

All we study about the Top

Top mass
Top mass difference
Top charge
Lifetime
Top width

Production cross section
Production kinematics
Production via resonance
New particles

W helicity

Branching ratios
$\left|V_{\mathrm{tb}}\right|$
Anomalous coupling New/Rare decays

Spin correlation Charge asymmetry Color Flow
s - \& t- channel production properties and searches in single top events

Y Peters

Top Quark Mass

- Free parameter of the SM
- Together with W mass: puts constraint on Higgs mass

- Measurement done with several methods: Template method, ideogram, matrix element, etc.
- Methods also used for other analyses, e. g. W helicity \& spin correlations

Y Peters

Top Quark Mass: Template Method

Construct mass dependent template, fit to data

- Alljets and I+jets: Take info from hadronically decaying W mass to constrain jet energy scale

- Dilepton: Construction of templates more complicated due to presence of two neutrinos
- Neutrino weighting, Matrix Weighting,...

Y Peters

Top Quark Mass: Ideogram

- Use kinematic fit to reconstruct complete kinematics of the event \rightarrow yields fitted m_{t} for each jet to quark assignment

- Calculate event likelihood as function of m_{t}
' Used in I+jets \& alljets

CDF Run II Preliminary ($1.9 \mathrm{fb}^{-1}$)

Top Quark Mass: Matrix Element Method

- Use full event kinematics \rightarrow most precise method
- For each event calculate probability to belong to certain top mass $P_{\text {sig }}\left(x ; m_{t}\right) \propto \int$ PDF \times Matrix element \times Transfer function

- Perform likelihood fit of event probabilities
- Probability depends on top mass (\& JES for in-situ fit)
- Used in I+jets \& dilepton final states

Most Recent Mass Results

- Template:
- CDF (alljets), $5.8 \mathrm{fb}^{-1}: \mathrm{m}_{\mathrm{t}}=172.5 \pm 2.0$ (stat+syst) GeV
- CDF (dilepton), $5.6 \mathrm{fb}^{-1}: \mathrm{m}_{\mathrm{t}}=170.3 \pm 3.7$ (stat+syst) GeV
- Atlas (I+jets), $0.7 \mathrm{fb}^{-1}: \mathrm{m}_{\mathrm{t}}=175.9 \pm 0.9$ (stat) ± 2.7 (syst) GeV

Y Peters
PIC2011

- CMS (dilepton), $36 \mathrm{pb}^{-1}: \mathrm{m}_{\mathrm{t}}=175.5 \pm 4.6$ (stat) ± 4.6 (syst) GeV
- Ideogram:
- CMS (l+jets), $36 \mathrm{pb}^{-1}: \mathrm{m}_{\mathrm{t}}=173.1 \pm 2.1$ (stat) $)^{+2.8}{ }_{-2.5}$ (syst) GeV
- Matrix Element technique:
- DØ ($1+$ jets), $3.6 \mathrm{fb}^{-1}: \mathrm{m}_{\mathrm{t}}=174.9 \pm 1.5$ (stat+syst) GeV
- Dø (dilepton), $5.4 \mathrm{fb}^{-1}: \mathrm{m}_{\mathrm{t}}=174.0 \pm 3.0$ (stat+syst) GeV
- CDF (I+jets), $5.6 \mathrm{fb}^{-1}: \mathrm{m}_{\mathrm{t}}=173.0 \pm 1.2$ (stat+syst) GeV All constics limited

Top Quark Mass: Combinations

Mass of the Top Quark

- Systematics limited!

Y Peters

- Tevatron combination: first time uncertainty below 1 GeV !

Top spin correlation

- Top quark decays before hadronization: $1 / \Gamma_{\text {top }}<1 \mathrm{fm} \rightarrow$ top polarization preserved in angular dist of decay products
massless fermions: fixed helicity=chirality $+$
QCD conserves chirality

if $m->0$
chirality $->$ helicity $=$ projection of spin along direction of motion

dominant at Tevatron
tt is produced unpolarized

dominant at LHC

$\mathrm{L}=0, \mathrm{~J}=1 \rightarrow$ parallel opposite spins along given axis helicity

t \bar{t} Spin Correlations at LHC

LHC: 85\% gg $\rightarrow \mathrm{tt}$: dominated by like helicity gluons at low $\sqrt{ } \mathrm{s}$
Simple variable in dilepton channel: $\Delta \phi=\left|\phi_{1+}-\phi_{1-}\right|$

- No kinematic fit needed!

Result of template fit:
 $\mathrm{f}=1.06 \pm 0.21$ (stat) ${ }^{+0.40}{ }_{-0.27}$ (syst)

- Main systematics: ISR; modeling of signal
- Corresponds to $C_{\text {helicity }}=0.34^{+0.15}{ }_{-0.11}$ (SM: $\mathrm{C}_{\text {helicity }}=0.32$)
Agreement with SM
Already dominated by systematics

Top production as a window on new physics

Search for excess in tt production vs Mit - single-lepton

 $A=A T L A S, C=C M S$ (2011) $\int L d t=0.2 \mathbf{f b}^{-1}(\mathbf{A}) 1.14 \mathbf{f b}^{-1}(\mathbf{C})$- A: standard single lep (e μ) sel: ≥ 4 jets, ≥ 1 b-tag
- C: single μ, boosted top sel.
- ≥ 2 jets with $\mathrm{p}_{\mathrm{T}}>50 \mathrm{GeV}$, lead jet $\mathrm{p}_{\mathrm{T}}>250 \mathrm{GeV}$
- one non-iso $\boldsymbol{\mu}$ with $\Delta R>0.5$ from closest jet OR pt rel. to jet $>15 \mathrm{GeV}$

- high $\mathrm{P}_{\mathrm{T}, \text { lep }}+\mathrm{E}_{\mathbf{T}}{ }^{\text {miss }}>150 \mathrm{GeV}$

Data-driven QCD (jet template method normalize to low Ermiss (A),shape from ev. failing mu 2D cut (C)), W+jets normalization (A) (extrapol. from $N_{j e t}$ in W+jets-enriched sample)

Reconstruct leptonic W from E_{T} miss, lepton \& W mass, then $\mathbf{M t t}_{\text {tt }}$

- sum leptonic W to (A) 4 leading p_{T} jets or (C) jets giving back-to-back top-jets \leftarrow minimal \sum ΔR (lep/b-jet, leptonic top) \& max ΔR betw. tops
 rancesco.spano@cern.ch

Top Quark @ LHC

Search for excess in tt̄ production vs Mīt -single lepton

$$
A=A T L A S, \quad C=C M S
$$

- No excess found $\rightarrow \mathbf{9 5 \%}$ Bayesian credible interval for Z' \& RS KKGluon $\sigma^{*} B R$, including systematics as integrated (CMS), averaged(A) nuisance pars.
-Upper observed (expected) limit at 95\% prob on $Z^{\prime} \sigma^{*} B R$ (with Γ^{\prime} / m_{z} ~ 1\%) - C:sub-pb for $\mathrm{mz}^{\prime}>1.3 \mathrm{TeV},<0.2 \mathrm{pb}$ for $m_{z}>2.3 \mathrm{TeV}$
- A: 38 (40) pb for $m_{z^{\prime}=500 ~ G e V ~ t o ~} 3.2$ (5) pb for $m_{Z^{\prime}}=1.3 \mathrm{TeV}$
-C: For Z' with 3\% width exclude 805 $\mathbf{G e V}<m_{Z}<\mathbf{9 3 5} \mathbf{G e V}$ and $\mathbf{9 6 0} \mathbf{G e V}<m_{Z}<$ 1060 GeV at $95 \% \mathrm{CL}$
- A: KK Gluons with masses $<\mathbf{6 5 0} \mathbf{~ G e V}$ are excluded with 95% prob

g_{KK} mass [GeV]

Search for excess in tİ production vs Mt̄ - fully hadronic - Trigger on ≥ 1 jet with pT>200 GeV - "1+1": ≥ 2 R=0.8 Cambridge-Aachen(CA) jets

- $\mathbf{p}_{\mathrm{T}}>\mathbf{3 5 0} \mathrm{GeV}$ \& large $\boldsymbol{\Delta} \boldsymbol{\phi}>2.1$
- top-tagged ($m_{\text {jot }} \sim m_{\text {too }}, N_{\text {sub }}$-jets in last 2 jetmaking steps ≥ 3, $\min \left(m_{2}\right.$ sub-jets $\left.)>50 \mathrm{GeV}\right)$
- "1+2": ≥ 3 R=0.8 CA jets
- leading top-tagged jet with $\mathrm{p}_{\mathrm{T}}>350 \mathrm{GeV}$
- 2nd(3rd) pruned (discard soft, wideangle clusters) jet with $\mathbf{p}_{\mathbf{T}}>200$ (30) GeV , large $\boldsymbol{\Delta} \boldsymbol{\phi}>2.1(1.7)$ from 1st
- j2 is W-tag ($m_{j e t} \sim m_{w}, 2$ sub-jets,max $\left.\left(m_{\text {sub-jet }}\right) / m_{\text {jet }}<0.4\right), \mathbf{m}(\mathbf{j} \mathbf{2 , j} \mathbf{3}) \sim \mathbf{M}_{\mathbf{t o p}}$
- Data-driven QCD: weight 1-top or W-tag control sample with mis-tag prob \leftarrow antitag (fail top tag cuts) \& probe in semi-lep evs

Search for excess in t̄t production vs Mtē - fully hadronic

$$
\int L d t=\sim 0.89 \mathbf{f b}^{-1}(2011)
$$

- M tt: sum top jets in " $1+1$ ", sum top jet, Wjet and closest jet in "1+2"
- QCD: sum tag(s) \& probe jet, random $m_{\text {probe }}$ around $m_{\text {top }}$
- No excess found $\rightarrow \mathbf{9 5 \%}$ Bayesian credible interval for Z'/RS KKGluon $\sigma^{*} B R$ including systematics as integrated nuisance pars.
- Sub-pb limit on Z' σ^{*} BR
- exclude $1 \mathrm{TeV}<\mathrm{m}_{\text {KкGluon<1. }} 1.5$ TeV @ 95\%CL

fully hadronic di-top-jet candidate
Leptonic top
candidate

Hadronic top
candidate

- b tagged jet

Missing ET

Jet 1 : Top Tagging pt $589.1 \mathrm{GeV} / \mathrm{c}$, 3 subjets,
mass $=186.7 \mathrm{GeV} / \mathrm{c} 2$,
$\operatorname{minMass}=87.2 \mathrm{GeV} / \mathrm{c} 2$
semi-leptonic di-top-jet candidate

Conclusions

- Top analysis at LHC is in full swing thanks to the combined performance of LHC \& detectors: a very rich program is already underway.
- Top pair production cross section is measured in nearly all expected final states. It is consistent with the standard model at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ and most precise channels/combination are
- systematics dominated
- entering the realm of precision physics: $\delta \sigma / \sigma<\sim 10 \%$ comparable with theory uncertainty
- Single top production is clearly observed in the t-channel; need more data to observe it in Wt and s-channel.
- Top properties are rapidly reaching precision level with $\mathrm{m}_{\text {top }}$ already syst dominated
- The rapidly increasing data-set and detector understanding is quickly opening unprecedented phase space for new physics searches linked to top production ranging from resonances to

Additional (useful) references

- A. Quadt, Top quark physics at hadron colliders, Eur. Phys. J. C 48, 835-1000 (2006) DOI 10.1140/epjc/s2006-02631-6
- A J.. Khun, Theory of Top Quark Production and Decay, http:// arxiv.org/abs/hep-ph/9707321v1
- S Willembrock,THE STANDARD MODEL AND THE TOP QUARK, http://arxiv.org/ abs/hep-ph/0211067v3
- Chris Quigg, Top-ophilia,FERMILAB-FN-0818-T
and references therein

BACK-UP

Math Appendix : Mass, PT and DR

As we know that for any 4momentum

$$
E=m_{T} \cosh y, p_{x}, p_{y}, p_{z}=m_{T} \sinh y
$$

where

$$
m_{T}^{2}=m^{2}+p_{x}^{2}+p_{y}^{2} . \quad \text { and }
$$

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\ln \left(\frac{E+p_{z}}{m_{T}}\right)=\tanh ^{-1}\left(\frac{p_{z}}{E}\right) .
$$

$$
M^{2}=m_{1}^{2}+m_{2}^{2}+2\left[E_{T}(1) E_{T}(2) \cosh \Delta y-\boldsymbol{p}_{T}(1) \cdot \boldsymbol{p}_{T}(2)\right]
$$

where

$$
E_{T}(i)=\sqrt{\left|p_{T}(i)\right|^{2}+m_{i}^{2}},
$$

This can be re-written as

$$
M^{2}=m_{1}^{2}+m_{1}^{2}+2\left[E_{T}(1) E_{T}(2) \cosh \left(D_{y}\right)-p_{T}(1) p_{T}(2) \cos \right. \text { (DPhi) }
$$

where
DPhi $=$ Phi(2)-Phi(1)is the angle between the two momenta in the transverse plane

Now if 1) the masses of the particles are small w.r.t. their momenta and 2) the splitting is quasi collinear i.e. cosDPhi $\sim 1-(\mathrm{DPhi})^{2} / 2$ and $\cosh (\mathrm{Dy}) \sim 1+\mathrm{Dy}^{2} / 2$, so $\mathrm{E}_{\mathrm{T}}(\mathrm{l}) \sim \mathrm{pt}_{\mathrm{T}}(\mathrm{i})$
http://en.wikipedia.org/wiki/Hyperbolic function

$$
M^{2} \sim 2\left[p_{T}(1) p_{T}(2)\left(1+D^{2} / 2-1+\left(D P_{i}\right)^{2} / 2\right)\right]=p_{T}(1) p_{T}(2)\left(D^{2} / 2+\left(P_{P h i}\right)^{2}\right)=p_{T}(1) p_{T}(2)(D R(1,2))^{2}
$$

So
Labelling i and j such that $p_{t j}<p_{t i}$ and defining $z=p_{t j} / p_{t}$

$$
\left(p_{t}=p_{t i}+p_{t j}\right)
$$

$$
\begin{aligned}
m^{2} & \simeq z(1-z) p_{t}^{2} \Delta R_{i j}^{2} \\
d_{i j} & =z^{2} p_{t}^{2} \Delta R_{i j}^{2} \simeq \frac{z}{(1-z)} m^{2}
\end{aligned}
$$

Techniques for BKG estimation

Example background estimates: QCD multi-jet -single lep

- "Fake" leptons: mis-id jets, $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$, non-prompt leptons (b/c-decays)

μ channel: matrix method

- Measure $\mathrm{N}^{\text {standard }}$ (isolated- μ) and $\mathrm{N}^{\text {loose }}{ }_{(\text {non-iso- } \mu \text {) }}$ events and find standard fake muons from

$$
\begin{aligned}
& \mathrm{N}^{\text {loose }}=\mathrm{N}^{\text {loose }_{\text {fake }}+\text { N }^{\text {loose }} \text { real }} \\
& \mathrm{N}_{\text {standard }}=\varepsilon_{\text {fake }} \mathrm{N}^{\text {loose }} \text { fake }
\end{aligned}+\varepsilon_{\text {real }} \mathrm{N}^{\text {loosese }} \text { real }
$$

Efake from low $\mathrm{ET}^{\text {miss }}, \mathrm{M}^{\mathrm{W}}$ and $\varepsilon_{\text {real }}$ from $\mathrm{Z} \rightarrow \mu^{+} \mu^{-}$

- Do it in bins of any variable to get proper estimate

e channel: template method

- Derive QCD template from control region (electron fails one/more selection criteria)
- Normalize by fitting low $\mathrm{E}^{\text {miss }}$ shape (QCD template + MC samples) to data \rightarrow extrapolate to standard region

Example background estimates: QCD multi-jet - di-lepton

- Define tight (standard) and loose lepton samples relaxing
- calo and track isolation for μ
- calo isolation, TRT hits, E/p cuts for e
- Express measured (Tight,Loose) samples in terms of unknown (Real, Fake) and estimated probabilities $\boldsymbol{r}(\mathbf{f})$: for real (fake) leptons passing loose also to pass tight cuts
- Extract fake content by matrix inversion
$\left[\begin{array}{c}N_{T T} \\ N_{T L} \\ N_{L T} \\ N_{L L}\end{array}\right]=\left[\begin{array}{cccc}r r & r f & f r & f f \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r) r & (1-r) f & (1-f) r & (1-f) f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f)\end{array}\right]\left[\begin{array}{c}N_{R R} \\ N_{R F} \\ N_{F R} \\ N_{F F}\end{array}\right]$

Measure \boldsymbol{r} in $\mathrm{Z} \rightarrow \|$
Measure \boldsymbol{f} in QCD enriched sample: single loose lepton, low $\mathrm{E}^{\text {miss }}$ (W+jets subtracted using simulation)

Example background estimates: W+jets - single lepton

ATLAS

- Shape from simulation

- Normalization
- floating parameter to be determined from kinematic fit
- final normalization from fit, but starting value and variations constrained from data using

$$
W_{\geq 4, \text { tagged }}=W_{\geq 4, \text { pretag }} \cdot f_{2, \text { tagged }} \cdot \overline{k_{2 \rightarrow \geq 4}} .
$$

1: Derive correction to fraction of heavy and light flavour events in the $W+2 j e t$ bin before b-tagging
$N\left(W+j e t s, p r e-t a g, N_{j e t s,}\right)=N\left(W+j e t s, p r e-t a g, N_{j e t s}\right) *\left[\sum\right.$ Type $f_{\text {Type, }}$ Nets $] ; \sum f_{\text {type, Nets }}=1$ Type= Wbb+jets,Wcc+jets,Wc+jets,W+light jets; Njets= jet mult bin (0,1,2,3...)
-Derive $\mathrm{N}(\mathrm{W}+1$ jet) and $\mathrm{N}(\mathrm{W}+2 \mathrm{jet})$ with 1)standard single lepton selection and 2) subtraction of small backgrounds (tt,single t, di-boson, QCD from data) -Write $\mathrm{N}(\mathrm{W}+1$ jet, pre-tag $)$, $\mathrm{N}(\mathrm{W}+2 j e t$, pre-tag) and $\mathrm{N}(\mathrm{W}+2 j e t$, tag) as a function fyype, zjets. Assume fixed $f_{\text {Type, } 2 j e t s ~} / f_{\mathrm{T}_{\mathrm{ype}}, 2 j e t s}+\mathrm{f}_{\mathrm{wbb}, \mathrm{Nets}}=\mathrm{f}_{\mathrm{wbb}, \mathrm{Njets}} \rightarrow$ Derive $\mathrm{f}_{\mathrm{Type}, 2 \mathrm{jets}}$ -Compare data-driven fyype,2jets to MC value: derive scaling factors for fyype,2jets. Assume scaling $f_{\text {type, } 4 \text { jets }}$ is the same as $f_{\mathrm{f}_{\text {ype }}, 2 \mathrm{jets}}$. So now \sum alpha $\mathrm{f}_{\mathrm{y} y \mathrm{pe}, \mathrm{Njets}}$

Example background estimates: W+jets - single lepton (cont)

pre-tag=all standard cuts, no b-tag requirement tagged= all standard cuts, including at least 1 b -tag

2: Derive pre-tag $W+j e t s$ normalization W i.e. full selection except for >=1 b-tagged jet

$$
\begin{aligned}
& \text { In the proton there are more up (valence) quarks than down (valence) quarks } \rightarrow \\
& \quad\left(\overline{\text { udd }} \rightarrow \mathrm{W}^{+}\right)+\text {jets events are more numerous than (ud } \rightarrow \mathrm{W} \text {)+jets } \\
& W_{\geq 4, \text { pretag }}=N_{W^{+}}+N_{W^{-}}=\frac{\left(N_{W^{+}}^{M C}+N_{W^{-}}^{M C}\right)}{\left(N_{W^{+}}^{M C}-N_{W^{-}}^{M C}\right)}\left(D^{+}-D^{-}\right)=\left(\frac{r_{M C}+1}{r_{M C}-1}\right)\left(D^{+}-D^{-}\right),
\end{aligned}
$$

 selected events with a positive or negative lepton,
$r_{M C}$ is $\mathrm{Nw}^{+} / \mathrm{NW}^{-}$: it is estimated using ALL the W components and by scaling the heavy and light flavour samples according to point 1

3: Derive tagged W+jets normalization W by scaling pre-tag estimate

$$
W_{\geq 4, \text { tagged }}=W_{\geq 4, \text { pretag }} \cdot f_{2, \text { tagged }} \cdot k_{2 \rightarrow \geq 4} .
$$

Estimate $\mathrm{f}_{2, \text { tagged }}=\mathrm{N}(\mathrm{W}+\mathrm{jets}, 2 j e t s$, tagged $) / \mathrm{N}(\mathrm{W}+\mathrm{jets}, 2 j e t s, p r e-t a g)$ where $\mathrm{N}(\mathrm{W}+\mathrm{jets}, 2 j e t s, \mathrm{XX})$ are obtained from the data with 1) selection 2) small bkg subtraction
Estimate $\mathrm{K}_{2 \rightarrow \geq 4,=}=\mathrm{fMC} \mathrm{C}_{\text {tagged, }, \geq 4 \mathrm{jet} / \mathrm{fMC}}^{\text {tagged,2jet }}$,
Simulate $\mathrm{W}+$ jets events: get fraction of those selected + at least 1 b-tag to simply selected . Get these fractions for 2 jet bin and 4 jet bin. Get the ratio.

Example background estimates: W+jets - single lepton

- Shape from simulation,

ATLAS

- Normalization
- floating parameter to be determined from kinematic fit
- final normalization from fit, but starting value and variations constrained from data

$$
\begin{aligned}
& \text { PDFs for up and down quarks are different in proton } \\
& \qquad \mathrm{W}^{+} \text {are obtained from ud}+ \\
& N_{W^{+}}+N_{W^{-}}=\frac{\left(N_{W^{+}}^{M C}+N_{W^{-}}^{M C}\right)}{\left(N_{W^{+}}^{M C}-N_{W^{-}}^{M C}\right)}\left(D^{+}-D^{-}\right)=\left(\frac{r_{M C}+1}{r_{M C}-1}\right)\left(D^{+}-D^{-}\right)
\end{aligned}
$$

Additional measurements

Search for excess in tt̄ production - di-lepton

$$
\int L d t=1.04 \mathbf{f b}^{-1}(2011)
$$

- Standard: di-lepton selection (e,) + data-driven $\mathbf{Z} / \mathbf{\gamma}^{*}+\mathbf{j e t s}$ (ETmiss_dep Z-window) and QCD bkg estimates
- No excess found in $\mathrm{H}_{\top}+\mathrm{E}^{\text {miss }} \rightarrow$ 95\% Bayesian credible interval for RS KKGluon $\sigma^{*} B R$ including systematics as integrated nuisance
 pars.
- Exclude RS KKGluon with NEW! Mкк below 0.84 TeV at 95\% CL

default		Mass Limit (TeV)	
	$g_{q q g{ }^{\prime} / g_{s}}$	Expected	Observed
	$\rightarrow-0.20$	0.80	0.84
	-0.25	0.88	0.88
	-0.30 -0.35	0.95 1.02	0.92 0.96

Di-lepton: $\boldsymbol{\mu + \mathbf { T }}(\mathbf{T} \rightarrow$ had) channel New!
Check universality + sensitivity to $t \rightarrow H^{ \pm}+b \rightarrow$ Tvb

- ≥ 1 jet-seeded \mathbf{T} candidate (\leftarrow cut-based algo on particle flow objects (C) or Boosted Decision Tree (BDT) (A)) with opposite charge to μ (OS)
$-\geq 2$ jets $\& \geq 1$ b-tag
- large $\mathrm{E}^{\text {miss }}>40$ (C) or 30 (A) GeV \& $\mathrm{H}_{\mathrm{T}>200}$ $G e V(A)$ update and go to back-up

- Data-driven dominant tt \& W+jets (enriched low $N_{\text {jet }}$ region (A), weight $W+\geq$ 3jet with jet fake prob. from average of W $+\geq 1 j e t$ \& QCD enriched (C), QCD (non-iso mu sample normalized to low $E_{T}{ }^{\text {miss }}$)
- $\sigma_{\mathrm{tt}}=\mathrm{N}_{\mu+\mathrm{T}} / \mathrm{A}^{*}$ Lumi. $\mathrm{N}_{\boldsymbol{\mu}+\mathrm{t}}$ from
- C: bkg-subtracted data
- A: template IkI fit of difference of BDT in OS \& SS samples (cancel
$\sigma_{t \bar{t}}=142 \pm 21$ (stat.) \pm_{16}^{20} (syst.) ± 5 (lumi.) pb
$\delta \sigma / \sigma \sim 21 \%$
$\sigma_{\mathrm{tt}}=148.7 \pm 23.6$ (stat.) ± 26.0 (syst.) ± 8.9 (lumi.) pb most gluon \& b-jet fakes)

Fully hadronic channel
$\bullet \geq 4$ jet trigger, good jets
$\bullet \geq \mathbf{6}$ high p_{T} jets, $\geq \mathbf{2}$ b-tags

- 4 jets with $p_{T} \geq 60 \mathrm{GeV}(A, C), 5$ th (6th) jet $p_{T} \geq 50$ (40) GeV (C)
- A: no e or μ, small E_{T} miss/ $\sqrt{E_{T}}{ }^{\text {calo }}$ \& large $\mathrm{H}_{\mathrm{T}}>300 \mathrm{GeV}$
- Reconstruct with X^{2} kine fit
- Data-driven QCD bkg: weight control samples >=6 jets no b-tag (C) or 6,5 jets(A) with data driven b-tag prob
- \mathbf{N}_{tt} from $\mathbf{~ l k I ~ f i t ~ t o ~ t o p ~ m a s s ~ (C) ~ c h e c k e d ~ b y ~}$ neural network discr. or $\mathrm{X}^{2}(\mathrm{~A}) \rightarrow \sigma=\mathrm{Ntt}_{\mathrm{tt}} / \mathrm{A}^{*} \mathrm{Lumi}$ Systematics from pseudo exp. (dominated by b-tag, jet scale, bkg norm)

$$
\sigma_{\mathrm{tt}}=136 \pm 20 \text { (stat.) } \pm 40 \text { (sys.) } \pm 8 \text { (lumi.) pb } .
$$

$$
\delta \sigma / \sigma \sim 33 \%
$$

Luminosity, pile-up and simulation

Number of interactions per crossing at LHC seen by ATLAS - 2011

Number of Interactions per Crossing Shown is the luminosity-weighted distribution of the mean number of interactions per crossing for 2011. The plot is shown for data taken before and after the September Technical Stop where the beta* was reduced from 1.5 m to 1.0 m . The integrated luminosities and the mean mu values are given in the figure. The mean number of interactions per crossing corresponds the mean of the poisson distribution on the number of interactions per crossing. It is calculated from the instantaneous luminosity as $\mu=L \times \sigma_{\text {inel }} /\left(n_{\text {bunch }} \times f_{r}\right)$ where L is the instantaneous luminosity, $\sigma_{\text {inel }}$ is the inelastic cross section which we take to be $71.5 \mathrm{mb}, n_{\text {bunch }}$ is the

 number of colliding bunches and f_{r} is the LHC revolution frequency. More details on this can be found in arXiv: 1101.2185. The entries at $\mu \sim 0$ arise from pilot bunches that were present during many of the early LHC fills. The luminosity in these bunches is >100 times smaller than in the main bunches resulting in values $\mu<0.1$.

also see arxiv:1101.2185

Simulation Monte Carlo used in top analyses

Generation

$A=A T L A S, C=C M S$

- Top quark : MC@NLO (A), MADGRAPH(C)
- xsec is normalized to NNLO effects
- variationas with ACER (A), POWHEG(A,C)

Simulation for pile-up mostly included (from

- tau decays with TAUOLA
- Single top : MC@NLO(A), MADGRAPH (C)
- t, Wt and s channels
- normalized to MC@NLO, remove Wt overlaps with tt final state
- Z/gamma+jets : PYTHIA (A) for Z_tautau, ALPGEN (A) for Z to ee and Z to mumu NLO factor of 1.25, MADGRAPH(C)
- Di-boson : WW, ZZ: ALPGEN (A) normalized to NLO from MCFM, PYTHIA(C)
- W+jets: ALPGEN (A), MADGRAPH(C)
- W+n light partons, W+bb, W+cc, W+c

Hadronization

- HERWIG + JIMMY for underlying event modelling (A), PYTHIA(C)

Most massive constituent of matter

Mtop~ electroweak symmetry breaking scale $\mathbf{M T o p}^{\text {M }}$ Mold Atom Decay and strong production rate

