Growing superamplitudes 'organically'

Panagiotis Katsaroumpas Queen Mary, University of London

University College London, 15 May 2009 HEP Young Theorists' Forum

The experimental programme @ CERN

Large Hadron Collider:

New energies and hopefully 'New Physics'.

- Possible 'New Physics':
 - Higgs particle
 - Supersymmetry
 - Extra dimensions
 - Strings
 - ...
- How good are we in 'Old Physics'?

The experimental programme @ CERN

Large Hadron Collider:

New energies and hopefully 'New Physics'.

Possible 'New Physics':

- Higgs particle
- Supersymmetry
- Extra dimensions
- Strings

How good are we in 'Old Physics'?

'Organic' Superamplitudes

Yang-Mills theory

Standard Model (Yang-Mills) @ LHC

Background/Benchmark processes.

Yang-Mills

- Refined theoretical predictions needed to new experimental precision.
- Get better in 'Old Physics' in order to be able to identify 'New Physics'.

$A_n(\{p_i, h_i, a_i\}) = 2^{n/2} g^{n-2} \operatorname{tr} [t^{a_1} \cdots t^{a_n}] \mathcal{A}_n (p_1, h_1; \dots; p_n, h_n) + \operatorname{perms} + \operatorname{multi-tr}$

Yang-Mills theory

- Standard Model (Yang-Mills) @ LHC
 - Background/Benchmark processes.
 - Refined theoretical predictions needed to new experimental precision.
 - Get better in 'Old Physics' in order to be able to identify 'New Physics'.
- Scattering amplitude: a window to the theory.
- At weak coupling, perturbation theory (Feynman Diagrams):
 - Quick result to some accuracy,
 - Glimpse of full amplitude, its properties and symmetries.

$$A_n(\{p_i, h_i, a_i\}) = 2^{n/2} g^{n-2} \operatorname{tr} [t^{a_1} \cdots t^{a_n}] \mathcal{A}_n (p_1, h_1; \dots; p_n, h_n) + \operatorname{perms} + \operatorname{multi-tr}$$

Yang-Mills

Yang-Mills theory

Standard Model (Yang-Mills) @ LHC

- Background/Benchmark processes.
- Refined theoretical predictions needed to new experimental precision.
- Get better in 'Old Physics' in order to be able to identify 'New Physics'.
- Scattering amplitude: a window to the theory.
- At weak coupling, perturbation theory (Feynman Diagrams):
 - Quick result to some accuracy,
 - Glimpse of full amplitude, its properties and symmetries.

Yang-Mills: partial amplitudes are colour-ordered

Yang-Mills

Maximally supersymmetric theories

 N=4 Super-Yang-Mills:
 Perfect Lab for testing new techniques.
 AdS/CFT: Clues from and for String Theory. Example: MHV amplitude / polygonal lightlike Wilson loop duality
 [Alday, Maldacena] [Drummond, Korchemsky, Sokatchev,

(2007) Henn; Brandhuber, Heslop, Travaglini]

Maximally supersymmetric theories

• \mathcal{N} =4 Super-Yang-Mills:

Perfect Lab for testing new techniques.

AdS/CFT: Clues from and for String

Theory. Example: MHV amplitude / polygonal lightlike Wilson loop duality

[Alday, Maldacena][Drummond, Korchemsky, Sokatchev,
Henn; Brandhuber, Heslop, Travaglini]

• \mathcal{N} =8 Supergravity:

- Same techniques can be applied.
- Relations to String Theory and \mathcal{N} =4 SYM.
- Unexpected cancellations : UV finite? [Bern, Dixon, Roiban. hep-th/0611086 (review)]

 The effect of Supersymmetry: More complicated Langrangian but simpler amplitudes!

[Arkani-Hamed, Cachazo, Kaplan. 0808.1446 (review)]

On-shell superspace

 $\text{Massless momenta:} \quad p_i^\mu \sigma_\mu^{a \dot{a}} = p_i^{a \dot{a}} = \lambda_i^a \tilde{\lambda}_i^{\dot{a}}.$ • Variables: $\{\lambda_i, \tilde{\lambda}_i, h_i\}$, for real momenta: $\overline{\lambda} = \pm \tilde{\lambda}$. a = 1.9Lorentz invariants:

$$\langle i j \rangle = \lambda_i^a \lambda_{ja}, \quad [i j] = \tilde{\lambda}_i^{\dot{a}} \tilde{\lambda}_{j\dot{a}}. \quad \begin{vmatrix} a = 1, 2 \\ \dot{a} = 1, 2 \end{vmatrix}$$

Using Grassman (anticommuting) variables η_i :

$$\Phi(\lambda,\tilde{\lambda},\eta) = G^{+}(\lambda,\tilde{\lambda},\eta) + \eta^{A}\Gamma_{A}(\lambda,\tilde{\lambda},\eta) + \frac{1}{2}\eta^{A}\eta^{B}S_{AB}(\lambda,\tilde{\lambda},\eta) \quad \text{[Nair] (1988)} \\ + \frac{1}{3!}\eta^{A}\eta^{B}\eta^{C}\epsilon_{ABCD}\overline{\Gamma}^{D}(\lambda,\tilde{\lambda},\eta) + \frac{1}{3!}\eta^{A}\eta^{B}\eta^{C}\eta^{D}\epsilon_{ABCD}G^{-}(\lambda,\tilde{\lambda},\eta)$$

$$A = 1, \dots, \mathcal{N}$$

On-shell superspace

• Massless momenta: $p_i^{\mu}\sigma_{\mu}^{a\dot{a}}=p_i^{a\dot{a}}=\lambda_i^a\dot{\lambda}_i^{\dot{a}}.$ • Variables: $\{\lambda_i, \tilde{\lambda}_i, h_i\}$, for real momenta: $\overline{\lambda} = \pm \tilde{\lambda}$. a = 1, 2Lorentz invariants: $\langle i j \rangle = \lambda_i^a \lambda_{ja}, \quad [i j] = \tilde{\lambda}_i^{\dot{a}} \tilde{\lambda}_{j\dot{a}}.$ $\dot{a} = 1, 2$ Using Grassman (anticommuting) variables η_i : $\begin{array}{c} \bullet \text{ superfield} \\ \Phi(\lambda, \tilde{\lambda}, \eta) = G^+(\lambda, \tilde{\lambda}, \eta) + \eta \Phi_A(\lambda, \tilde{\lambda}, \eta) + \frac{1}{2}\eta^A \eta^B S_{AB}(\lambda, \tilde{\lambda}, \eta) \\ \end{array}$ [Nair] (1988) $+\frac{1}{3!}\eta^{A}\eta^{B}\eta^{C}\epsilon_{ABCD}\overline{\Gamma}^{D}(\lambda,\tilde{\lambda},\eta)+\frac{1}{3!}\eta^{A}\eta^{B}\eta^{C}\eta^{D}\epsilon_{ABCD}\overline{G}^{-}(\lambda,\tilde{\lambda},\eta)$ fermions gluon $A = 1, \ldots, N$

Queen Mary

On-shell superspace

MHV amplitudes

Simplest non-vanishing amplitudes.
 Used as vertices to reformulate the perturbative expansion in terms of 'MHV Diagrams' with scalar propagators.

[Cachazo, Svrcek, Witten] (2004)

$$\mathcal{A}_{n,0}^{\mathrm{MHV}} = i(2\pi)^{4} \delta^{(4)} \left(\sum_{i} \lambda_{i}^{a} \tilde{\lambda}_{i}^{\dot{a}}\right) \frac{\langle r s \rangle^{4}}{\langle 1 2 \rangle \langle 2 3 \rangle \cdots \langle n 1 \rangle} \quad \stackrel{\text{[Parke-Taylor]}}{\underset{\text{(1986)}}{\text{(1986)}}}$$
tree-level

$$\mathcal{A}_{n;0}^{\text{MHV}} = i(2\pi)^4 \delta^{(4)} \left(\sum_i \lambda_i^a \tilde{\lambda}_i^{\dot{a}}\right) \frac{\delta^{(8)}(\sum_i \lambda_i^a \eta_i^A)}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \dots \langle n \ 1 \rangle}$$

[Nair] (1988)

MHV amplitudes

Simplest non-vanishing amplitudes.
 Used as vertices to reformulate the perturbative expansion in terms of 'MHV Diagrams' with scalar propagators.

[Cachazo, Svrcek, Witten] (2004)

 $\mathcal{A}_{n,0}^{\text{MHV}} = i(2\pi)^{4} \delta^{(4)} (\sum_{i} \lambda_{i}^{a} \tilde{\lambda}_{i}^{\dot{a}}) \frac{\langle r s \rangle^{4}}{\langle 1 2 \rangle \langle 2 3 \rangle \cdots \langle n 1 \rangle} \quad \stackrel{[\text{Parke-Taylor]}}{(1986)}$ tree-level $\mathcal{A}_{n;0}^{\text{MHV}} = i(2\pi)^{4} \delta^{(4)} (\sum_{i} \lambda_{i}^{a} \tilde{\lambda}_{i}^{\dot{a}}) \frac{\delta^{(8)} (\sum_{i} \lambda_{i}^{a} \eta_{i}^{A})}{\langle 1 2 \rangle \langle 2 3 \rangle \cdots \langle n 1 \rangle} \quad [\text{Nair] (1988)}$

6

All-in-one package

Superamplitudes: amplitudes of superfields.

$$\mathcal{A}_n(\lambda_i, \tilde{\lambda}_i, \eta_i) = \mathcal{A}(\Phi_1 \dots \Phi_n)$$

General form of a superamplitude:

[Drummond, Henn, Korchemsky, Sokatchev] (2008)

$$\mathcal{A}_n(\lambda_i, \tilde{\lambda}_i, \eta_i) = i(2\pi)^4 \delta^{(4)}(\sum_i \lambda_i^a \tilde{\lambda}_i^{\dot{a}}) \, \delta^{(8)}(\sum_i \lambda_i^a \eta_i^A) \, \mathcal{P}_n(\lambda_i, \tilde{\lambda}_i, \eta_i)$$

Panos Katsaroumpas | 'Organic' Superamplitudes | UCL, 15 May 2009

All-in-one package

Superamplitudes: amplitudes of superfields.

$$\mathcal{A}_n(\lambda_i, \tilde{\lambda}_i, \eta_i) = \mathcal{A}(\Phi_1 \dots \Phi_n)$$

• General form of a superamplitude: [Drummond, Henn, Korchemsky, Sokatchev] 8 powers of η components $\mathcal{A}_n(\lambda_i, \tilde{\lambda}_i, \eta_i) = i(2\pi)^4 \delta^{(4)} (\sum_i \lambda_i^a \tilde{\lambda}_i^{\dot{a}}) \delta^{(8)} (\sum_i \lambda_i^a \eta_i^A) \mathcal{P}_n(\lambda_i, \tilde{\lambda}_i, \eta_i)$ MHV NMHV N²MHV η expandable η 's $\mathcal{P}_n^{(0)} + \mathcal{P}_n^{(4)} + \mathcal{P}_n^{(8)} + \ldots + \mathcal{P}_n^{(4n-16)} = \mathcal{P}_n$ powers of η components

All-in-one package

Superamplitudes: amplitudes of superfields.

$$\mathcal{A}_n(\lambda_i, \tilde{\lambda}_i, \eta_i) = \mathcal{A}(\Phi_1 \dots \Phi_n)$$

General form of a superamplitude: [Drummond, Henn, Korchemsky, Sokatchev] (2008)8 powers of η components \leftarrow $\mathcal{A}_{n}(\lambda_{i},\tilde{\lambda}_{i},\eta_{i}) = i(2\pi)^{4}\delta^{(4)}(\sum_{i}\lambda_{i}^{a}\tilde{\lambda}_{i}^{\dot{a}}) \,\delta^{(8)}(\sum_{i}\lambda_{i}^{a}\eta_{i}^{A}) \,\mathcal{P}_{n}(\lambda_{i},\tilde{\lambda}_{i},\eta_{i})$ $\overset{\text{expandable}}{\mathsf{MHV}} \qquad \mathsf{NMHV} \qquad \mathsf{NMHV} \qquad \mathsf{NMHV} \qquad \mathsf{MHV} \qquad \mathsf{MHV} \qquad \mathsf{MHV} \qquad \mathsf{MHV} \qquad \mathsf{NMHV} \qquad \mathsf{MHV} \qquad$ expandable in η 's $\begin{array}{c} & \uparrow & & \swarrow \\ \mathcal{P}_n^{(0)} + \mathcal{P}_n^{(4)} + \mathcal{P}_n^{\textcircled{8}} + \dots + \mathcal{P}_n^{(4n-16)} = \mathcal{P}_n \end{array}$ powers of η components \leftarrow Example: the part proportional MHV ' to $(\eta_r^1 \dots \eta_r^4)(\eta_s^1 \dots \eta_s^4) \longrightarrow$ (all gluons)

'Growing' superamplitudes efficiently

Too many Feynman diagrams make expansion inefficient.

'Growing' superamplitudes efficiently

Too many Feynman diagrams make expansion inefficient.

The efficient way to calculate superamplitudes is the 'organic' way:

Feynman-diagrams-free.

Using on-shell ingredients only.

From recycled to recyclable super-amplitudes.

Now containing manifest supersymmetry and exotic ingredients like 'dual' superconformal symmetry.

'Growing' superamplitudes efficiently

Too many Feynman diagrams make expansion inefficient.

The efficient way to calculate superamplitudes is the 'organic' way:

Feynman-diagrams-free.

Using on-shell ingredients only.

From recycled to recyclable super-amplitudes.

Now containing manifest supersymmetry and exotic ingredients like 'dual' superconformal symmetry.

 Fairtrade: no one has to calculate 100's of Feynman diagrams, or supergraphs.

'Seeding' superamplitudes

Knowledge of just the analytic structure of the propagator in complexified Minkowski.
Three-point amplitudes (non-vanishing for complex momenta).

$$\stackrel{P}{\longrightarrow} \propto \frac{1}{P^2}$$

$$\mathcal{A}_{3;0}^{\text{MHV}} = \frac{\delta^{(8)} \left(\sum_{i=1}^{3} \lambda_{i} \eta_{i} \right)}{\langle 1 \ 2 \rangle \langle 2 \ 3 \rangle \langle 3 \ 1 \rangle} \qquad \text{[Nair] (1988)}$$
$$\mathcal{A}_{3;0}^{\overline{\text{MHV}}} = \frac{\delta^{(4)} \left(\eta_{1} [2 \ 3] + \eta_{2} [3 \ 1] + \eta_{3} [1 \ 2] \right)}{[1 \ 2] [2 \ 3] [3 \ 1]}$$

 $\langle \alpha \rangle / 2$

[Arkani-Hamed, Cachazo, Kaplan] (2008) [Brandhuber, Heslop, Travaglini] (2008)

'Seeding' superamplitudes

 Knowledge of just the analytic structure of the propagator in complexified Minkowski.
 Three-point amplitudes (non-vanishing for complex momenta).

$$\mathcal{A}_{3;0}^{\text{MHV}} = \frac{\delta^{(8)} \left(\sum_{i=1}^{3} \lambda_{i} \eta_{i} \right)}{\left(\langle 1 2 \rangle \langle 2 3 \rangle \langle 3 1 \rangle \right)^{2}} \qquad \text{[Nair] (1988)}$$

$$\mathcal{A}_{3;0}^{\overline{\text{MHV}}} = \frac{\delta^{(4)} \left(\eta_{1} [2 3] + \eta_{2} [3 1] + \eta_{3} [1 2] \right)}{\left([1 2] [2 3] [3 1] \right)^{2}}$$

[Arkani-Hamed, Cachazo, Kaplan] (2008) [Brandhuber, Heslop, Travaglini] (2008)

• First clues of the pattern: $\mathcal{N}=8 \text{ SUGRA} \sim (\mathcal{N}=4 \text{ SYM})^2$

Marv

Shifted superamplitudes

$$\eta_i(z) = \eta_i + z\eta_j$$

$$\tilde{\lambda}_i(z) = \tilde{\lambda}_i + z\tilde{\lambda}_j \qquad \lambda_j(z) = \lambda_j - z\lambda_i$$

 $A_n(z)$

- Deformed amplitude $\mathcal{A}_n(z)$.
- On-shell quantity for all values of z,
- but with complex momenta.
- Overall momentum conserved,
- Overall supercharge conserved.

$$p_i(z) = p_i + z\lambda_i \tilde{\lambda}_j$$
 $p_j(z) = p_j - z\lambda_i \tilde{\lambda}_j$

Shifted superamplitudes

$$\eta_i(z) = \eta_i + z\eta_j$$

$$\tilde{\lambda}_i(z) = \tilde{\lambda}_i + z\tilde{\lambda}_j \qquad \lambda_j(z) = \lambda_j - z\lambda_i$$

- Deformed amplitude $\mathcal{A}_n(z)$.
- On-shell quantity for all values of z,
- but with complex momenta.
- Overall momentum conserved,
- Overall supercharge conserved.

$$p_i(z) = p_i + z\lambda_i\tilde{\lambda}_j$$
 $p_j(z) = p_j - z\lambda_i\tilde{\lambda}_j$

As the deformation parameter $z
ightarrow \infty$

[Arkani-Hamed, Kaplan] (2008)

Amplitudes always vanish at infinity under supersymmetric shifts. Even better behaviour for gravity amplitudes due to cancellations.

'Organic' Superamplitudes

On-shell recursion relations (BCFW)

Queen Mary

11

On-shell recursion relations (BCFW)

Source of Poles: intermediate propagator going on-shell.

Residues: products of lower point amplitudes.

Marv

On-shell recursion relations (BCFW)

Source of Poles: intermediate propagator going on-shell.
 Residues: products of lower point amplitudes.

One-loop expansion

1-loop: integration over loop momentum l.
 4D: amplitudes expandable in a known basis of integrals: boxes, triangles, bubbles + rational part.

$$I_i(K_1, \dots, K_i) = (4\pi)^{2-\epsilon} \int \frac{d^{4-2\epsilon}l}{(2\pi)^{4-2\epsilon}} \frac{1}{l^2(l+K_1)^2 \cdots (l-K_i)^2}$$

12

One-loop expansion

1-loop: integration over loop momentum l.
 4D: amplitudes expandable in a known basis of integrals: boxes, triangles, bubbles + rational part.

$$I_{i}(K_{1}, \dots, K_{i}) = (4\pi)^{2-\epsilon} \int \frac{d^{4-2\epsilon}l}{(2\pi)^{4-2\epsilon}} \frac{1}{l^{2}(l+K_{1})^{2}\cdots(l-K_{i})^{2}}$$
of internal propagators clusters of external momenta
$$K_{1} \bigvee K_{2}$$

$$\mathcal{A}_{n;1} = \sum_{\mathcal{P}(\{K_i\})} \mathcal{C}(K_1, K_2, K_3, K_4) I_4(K_1, K_2, K_3, K_4)$$

12

Queen Marv

 K_{2}

One-loop expansion

• 1-loop: integration over loop momentum l. • 4D: amplitudes expandable in a known basis of integrals: boxes, triangles, bubbles + rational part.

$$K_{i}(K_{1}, \dots, K_{i}) = (4\pi)^{2-\epsilon} \int \frac{d^{4-2\epsilon}l}{(2\pi)^{4-2\epsilon}} \frac{1}{l^{2}(l+K_{1})^{2}\cdots(l-K_{i})^{2}}$$
of internal propagators clusters of external momenta $K_{1} \longrightarrow K_{2}$

"No-triangle hypothesis": in maximal supersymmetry, amplitudes contain only boxes.

[Bern, Dixon, Dunbar, Kosower] (1994) [Bjerrum-Bohr, Dunbar, Ita, Perkins, Risager] (2006) [Bjerrum-Bohr, Vanhove] (2008)

$$\mathcal{A}_{n(1)} = \sum_{\mathcal{P}(\{K_i\})} \mathcal{C}(K_1, K_2, K_3, K_4) I_4(K_1, K_2, K_3, K_4) \xrightarrow{} \text{rational functions of the particle spinors}$$

→ all different clusterings

Generalised unitarity (quadruple cuts)

One-loop supercoefficients from trees.

[Britto, Cachazo, Feng] (2005)

UCL, 15 May 2009

Generalised unitarity (quadruple cuts)

One-loop supercoefficients from trees.

[Britto, Cachazo, Feng] (2005)

Queen Mary University of London 13

Generalised unitarity (quadruple cuts)

[Britto, Cachazo, Feng] (2005) [Drummond, Henn, Korchemsky, Sokatchev] (2008)

- Supercoefficients from tree superamplitudes, without any integration!
- BCFW: any tree superamplitude,
- Unitarity: all supercoefficients, therefore, all one-loop superamplitudes.

(2, 3, 45)

one massive corner

'Organic' Superamplitudes

14

One contributing solution:

 $l_1 = z_1 \lambda_2 \tilde{\lambda}_1, \qquad l_2 = l_1 + p_2, \ldots$

(2, 3, 45)

one massive corner

'Organic' Superamplitudes

Q Queen Mary

University of Lond

$$\begin{split} &\frac{\delta^{(4)}(\eta_{l_4}[1l_1] + \eta_1[l_1l_4] + \eta l_1[l_41])}{[l_41][1l_1][l_1l_4]} \\ &\times \frac{\delta^{(8)}(\lambda_{l_1}\eta_{l_1} + \lambda_2\eta_2 - \lambda_{l_2}\eta l_2)}{\langle l_12\rangle\langle 2l_2\rangle\langle l_2l_1\rangle} \\ &\times \frac{\delta^{(4)}(\lambda_{l_2}[3l_3] + \lambda_3[l_3l_2] + \eta l_3[l_23])}{[l_23][3l_3][l_3l_2]} \\ &\times \frac{\delta^{(8)}(\lambda_{l_3}\eta_{l_3} + \lambda_4\eta_4 + \lambda_5\eta_5 - \lambda_{l_4}\eta l_4)}{\langle l_34\rangle\langle 45\rangle\langle 5l_4\rangle\langle l_4l_3\rangle} \end{split}$$

$$\mathcal{C}_{5}^{1m}(1,2,3,45)$$

one massive corner

 $\frac{1}{2}$

Relations between SYM and supergravity

KLT relations heuristically derived from string theory.
 New relations from field theory:
 Kawai, Lewellen, Tye]
 (1986)
 (1986)
 (1986)

$$\mathcal{M}_{n}^{\text{tree}}(1,\ldots,n) = \sum_{\substack{\mathcal{P}(2,\ldots,n-1)}} \left[\mathcal{A}_{n}^{\text{tree}}(1,\ldots,n) \right]^{2} \overline{G(1,\ldots,n)}$$
permutations (Drummond, Spradlin, Volovich, Wen] (2009)

- Dressing factions calculated with on-shell recursion.
- 1st and nth leg <u>not permuted</u>,
- G independent of η_1 and η_n .

Relations between SYM and supergravity

[Kawai, Lewellen, Tye] KLT relations heuristically derived from string theory. (1986)'dressing function' New relations from field theory:

$$\mathcal{M}_{n}^{\text{tree}}(1,\ldots,n) = \sum_{\substack{\mathcal{P}(2,\ldots,n-1)}} \left[\mathcal{A}_{n}^{\text{tree}}(1,\ldots,n) \right]^{2} \overline{G(1,\ldots,n)}$$
permutations (Drummond, Spradlin, Volovich, Wen] (2009)

Dressing factions calculated with on-shell recursion.

• 1st and nth leg <u>not permuted</u>,

• G independent of η_1 and η_n .

Plugging them into unitarity we obtain relations between one-loop coefficients:

 $\mathcal{C}_{2me}^{\mathcal{N}=8}(r, P, s, Q) =$ (MHV case) $\sum \quad \sum \quad \left[\mathcal{C}_{2me}^{\mathcal{N}=4}(r, P, s, Q) \right]^2$ $\mathcal{P}(\{P\}) \mathcal{P}(\{Q\})$

[PK, Travaglini, Spence] (to appear)

 $\times 2 G(-l_2, P, l_3) G(-l_4, Q, l_1)$ cut sol.

'Organic' Superamplitudes

Some open questions

• Existence of a full basis of integrals beyond one loop, so that we can better exploit on-shell methods for more loops.

- Relations between SYM and supergravity beyond one loop.
- Better understanding of cancellations in \mathcal{N} =8 supergravity.
- IS N=8 supergravity UV finite?
 (If no, at what number of loops do the UV divergences appear?)

 Simpler results than intermediate expressions. Is there a shortcut? Possibly a new sort of dual formulation of the theory has yet to be discovered.

www.strings.ph.qmul.ac.uk/~pka/

16

Superamplitudes

Panagiotis Katsaroumpas, QMUL

Cambridge, 16 April 2009 Beyond Part III, Young Researchers in Mathematics

The mysterious Dual space

Dual x-space: redefinition of momentum space:

$$p_i := x_i - x_{i+1},$$

($\eta_i \lambda_i := \theta_i - \theta_{i+1}$).

momentum conservation

The mysterious Dual space

Dual x-space: redefinition of momentum space:

 $p_i := x_i - x_{i+1},$

$$\eta_i\lambda_i:= heta_i- heta_{i+1}$$
).

• In dual space (x, λ, θ) , $\mathcal{N} = 4$ amplitudes are manifestly superconformally covariant.

Tree MHV superamplitudes transform covariantly under inversions:

$$x^{\mu} \to \frac{x^{\mu}}{x^2}$$
 $\mathcal{A}(1,2,\ldots,n) \to \mathcal{A}(1,2,\ldots,n) \prod_{k=1}^n x_k^2.$

Property shown to hold for any tree superamplitude using on-shell recursion relations. [Brandhuber, Heslop, Travaglini] (2008)

One-loop supercoefficients shown to transform covariantly using quadruple cuts.

MHV amplitude / Wilson loop duality

For MHV amplitudes of gluons, the factor

$$\frac{\mathcal{A}_n^{(L)}(p_1, p_2, \dots, p_n)}{\mathcal{A}_n^{\text{tree}}(p_1, p_2, \dots, p_n)}$$

is a helicity-blind kinematical function at any loop.

$$\mathcal{W}[\mathcal{C}_n] = \operatorname{tr} \mathcal{P} \exp\left[ig \oint_{\mathcal{C}_n} dx^{\mu} A^a_{\mu}(x) t^a\right].$$

E2

MHV amplitude / Wilson loop duality

For MHV amplitudes of gluons, the factor

$$\frac{\mathcal{A}_n^{(L)}(p_1, p_2, \dots, p_n)}{\mathcal{A}_n^{\text{tree}}(p_1, p_2, \dots, p_n)}$$

is a helicity-blind kinematical function at any loop.

Its finite part is equal to that of the expectation value of a polygonal lightlike Wilson loop living in the dual space:

[Drummond, Korchemsky, Sokatchev, Henn] (2007) [Brandhuber, Heslop, Travaglini] (2007)

lightlike contour C_n

 p_3

cusps

 x_1

 p_n

 x_n

Integration in the vicinity of the cusps produces UV divergences UV divergences match the IR divergences of the amplitude.

 \mathcal{X}