Analysis of Invisible Higgs production in the tth channel

Introduction Analysis overview Results so far Comparison to reference Kinematic fit Conclusion

> Ricardo Goncalo Pedro Teixeira-Dias

Higgs WG meeting - Physics Week - Oct.04

Introduction

Motivation:

- Several scenarios for physics BSM predict a significant invisible branching ratio
- Complementary to the VBF channel with invisible Higgs

Build upon work done at Royal Holloway:

(E.Brambilla, talk at Higgs WG meeting, May 2002; T.L.Cheng, MSc.Thesis, available at: http://www.pp.rhul.ac.uk/~ctehlee/)

Aim to reproduce and build upon results from previous analysis:

(B.Kersevan, M.Malawski, E.Richter-Was, Eur. Phys. J C29 (2003) 541, ATL-COM-PHYS-2003-016; M.Malawski, MSci Thesis, hep-ph/0407160)

Ricardo Gonçalo - RHUL

Analysis overview

Process	σxBR
tth	330 (*) fb
tt	490 000 fb
bbW, W \rightarrow Iv	73 000 fb
bbZ, $Z \rightarrow I^+I^-$	61 400 fb
ttW, W \rightarrow Iv	420 fb
ttZ, $Z \rightarrow v$	190 fb

Cut-based analysis Only signal and tt backg so far Difficulties:

- Two components of missing momentum: can't reconstruct t→bvl
 - ttbar is the most significant background and is very similar to signal
- Signal/Background ~10⁻³

Higgs WG meeting - Physics Week - Oct.04

(*) σ =520 fb in reference analysis, with SM couplings

Cuts

Reference analysis cuts:

- 1 electron (p_T>25GeV; |η|<2.5)
- or 1 muon (p_T >20GeV; $|\eta|$ <2.5)
- Veto on additional electron (p_T>10GeV) or additional muon (p_T>6GeV)
- 2 b-tagged jets
- 2 or more un-tagged jets
- t→bjj reconstruction:
 - − $|m_{jj}-m_W|$ <15GeV; |η|<2.0 for jets in W→jj
 - |m["]_{bii}-m_t|<25GeV
- m_T > 120 GeV
- Missing $E_T > 150 GeV$
- Scalar sum of p_T of reconstructed I j j b b: $\Sigma E_T > 250 \text{GeV}$
- In reconstructed W \rightarrow jj: R_{ii} = $\sqrt{(\eta^2_{ii} + \phi^2_{ii})} < 2.2$ (to reject lep-tau decays)

4

Simulation

- Channel: Higgs (m_h = 120 GeV) decaying to neutralinos in MSSM
 - $(\tan\beta = 5, m_A = 1 \text{ TeV}; M_1 = 44 \text{ GeV}, M_2 = 220 \text{ GeV}, M_3 = 1 \text{ TeV})$
- PYTHIA 6.203 for signal and background
- Generated 60 M tt + 10 M tth
- Atlfast simulation, ATLAS release 7.0.2
 - Low luminosity setting
 - Cone jets $(R_{cone} = 0.4)$
 - Jet tagging: b jets 60%; c mistag 10%; u,d,s, τ mistag 1%
 - CTEQ5L PDFs
 - $-m_{top} = 175 \text{ GeV} (..historical)$
- Interfaced code to Atlfast within Athena to produce dedicated ntuple

The truth!

- At parton level:
 - tops back-to-back in background
 - more "mercedes star"-like in signal
 - Most missing p_T from Higgs decay (especially in had-had channel)

Signal and tt background

- Transverse mass, ΣE_T and E_T^{miss} are good discriminating variables
- m_T has sharp edge for tt background at ~m_W
- But background xsection ~1000 times higher than signal
- Tails of background distributions very large

$$m_T = \sqrt{\left(E_T^{miss} + E_T^{lepton}\right)^2 - \left(p_T^{miss} + p_T^{lepton}\right)^2}$$

- Relaxed E_T^{miss} cut to 120GeV wrt reference analysis
- Background much higher than tth
- Signal and background normalized to 30 fb⁻¹

- Most background comes from lep-tau and lep-lep decays of tt, as concluded in reference paper
- τ decays increase the missing E_T
- W→jj reconstructed from ISR/FSR jets in lep-tau and lep-lep events

Ricardo Gonçalo - RHUL

- Main problem in tt background is the "leptau" channel decays with fake W→jj
- tth signal much more pure wrt W→jj (we're looking at the tails of tt background)
- Not much point in rejecting taus in Atlfast, must look for other possibilities

Higgs WG meeting - Physics Week - Oct.04

No cut found so far that can be targeted at lep-tau and leplep channels in tt production in addition to what was found in the reference analysis

Higgs WG meeting - Physics Week - Oct.04

Ricardo Gonçalo - RHUL

11

Accepted events for 30 fb⁻¹

- tth x-section scaled to SM value as used in reference analysis
- tth: x-section = 520 fb⁻¹
 Signal = 44.3 ever
 - Signal = 44.3 events
- tt: x-section = 490000.0 fb⁻¹
 Background = 812 events
 - $S/\sqrt{B} = 1.55$

Ricardo Gonçalo - RHUL

Comparison with reference analysis

Cumulative efficiency of cuts:

- Reasonable agreement with reference analysis: ~10-20% for signal ("check" column)
- Agreement wrt tt background efficiency becomes worse (factor 1.35 2.8) for cuts after m_T cut
- Testing all t→bjj combinations against m_W and m_t gives efficiency ~30% better wrt "cross check" ("this analysis" column) both for signal and background ⇒ (small) net gain in significance

Cut	Reference tth	Cross check tth	this analysis tth	Reference tt	Cross check tt	this analysis tt
Lepton	22%	23.6%	23.6%	22%	23.6%	23.7%
Jets/b jets	5.0%	5.7%	5.7%	4.9%	5.01%	5.02%
t →bjj	2.6%	2.9%	3.4%	2.4%	2.60%	2.98%
m _T	0.87%	1.12%	1.33%	0.041%	0.055%	0.063%
E _T ^{miss}	0.41%	0.51%	0.67%	2.0x10 ⁻⁵	3.8x10 ⁻⁵ ±0.6	4.9x10⁻⁵
ΣE_{T}	0.40%	0.50%	0.67%	2.0x10 ⁻⁵	3.7x10 ⁻⁵ ±0.6	4.6x10⁻⁵
R _{ij}	0.28%	0.33%	0.44%	7.5x10 ⁻⁶	2.1x10 ⁻⁵ ±0.5	2.8x10⁻⁵

Kinematic fit

Tried something different:

- Assume p_T^{miss} comes from v and h only
- Build grid of points in p_T^{ν} and $\phi(I,\nu)$ and calculate p_Z^{ν}
- p_Z^v can be found from p_T^v and p^{lep} assuming W on mass-shell
- From p^b, p^v and p^{lep}, calculate m_t for each point
- Propagate errors in m_t from grid spacing to obtain σ_{mt} and calculate χ^2

Ricardo Gonçalo - RHUL

Kinematic fit results

- Kinematic fit ~works for signal: σ(p_T^h)~85GeV
- Will try to use fit results for discrimination against tt background
- The hope is that this allows other cuts to be relaxed
- Correlations to m_T and E_T^{miss} may be important

Conclusions

- Major background to tth has been studied
- Reasonable agreement with reference analysis – still work to be done to find remaining differences
- Some improvement in significance may be achieved by different reconstruction of t→bjj
- Simple kinematic fit to semileptonic top decay may be useful to discriminate against background