# **UC**

# Low Background Screening Capability in the UK

# Chamkaur Ghag University College London



Low Radioactivity Techniques 2015 18-20 March, 2015





#### **Rare Event Search Experiment Requirements**

- Background from material radioactivity << signal</li>
   Comprehensive material screening campaign
- Accurate map of contaminants for high precision background model
   Multiple techniques for complete U/Th chains
   Sub-component activities for neutron yields
- 3) Material selection well before construction and installation
   ➤ High throughput, low activity assays, particularly U/Th

## 238U Chain



# 238U Chain

| <sup>238</sup> U Early sub-chain                                                                                                                                                                                                                                                              | 226Ra sub-chain                                                                                                                                                                                             | <sup>210</sup> Pb sub-chain                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 238U       4. Gyr         a (4.2 MeV)         234Th       24 d         B (0.19 MeV)         Y (63 keV, 3.5%)         Y (93 keV, 4%)         234mPa         1.2 min         B (2.3 MeV)         Y (770 keV, 0.3%)         Y (1000 keV, 0.6%)         234U         0.25 Myr         a (4.8 MeV) | From <sup>239</sup> Th<br>226Ra 1.6 kyr<br>a (4.8 MeV)<br>y (190 keV, 4%<br>222Rn 3.8 d<br>a (5.5 MeV)<br>218Po 3.1 min<br>a (6.1 MeV)<br>214Pb 28 6 min<br>B (1.0 MeV)<br>y (295 keV, 19<br>y (352 keV, 36 | From <sup>214</sup> Po<br>210 Pb<br>22 )r<br>y (47 keV, 4%)<br>210 Bi<br>y (47 keV, 4%)<br>210 Bi<br>z (1.2 MeV)<br>210 Po<br>138 d<br>z (5.3 MeV)<br>206 Pb<br>206 Pb |
| $\begin{array}{c} \downarrow \qquad \gamma (53 \text{ keV}, 0.2\%) \\ \hline 230\text{Th} \qquad 75 \text{ kyr} \\ \downarrow \qquad \qquad \downarrow \qquad \qquad$                              | 214Bi<br>B (3.2 MeV)<br>γ (609 keV, 47<br>γ (1.12 MeV, 1<br>γ (1.76 MeV, 1                                                                                                                                  | Mass Spec.,<br>NAA<br>7%) U/G Ge                                                                                                                                       |
| 10Ra                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 2^{14}\text{Po} & 160 \ \mu\text{s} \\ \downarrow &                                 $                                                                                                     | Si PIN<br>alpha<br>spectroscopy                                                                                                                                        |



#### **Ultra-low Background Screening in the UK**

- Gamma Spectroscopy
  - Boulby underground laboratory
- Mass Spectrometry
  - Dedicated low-background facility at UCL
- Radon Detection
  - Trace emanation facility at MSSL (UCL)

| Technique       | Isotopes                                                                                                                                                           | Typical<br>Sensitivity<br>Limits | Sample<br>Mass | Destructive/<br>Non-<br>desctructive | Assay<br>Duration | Notes                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|--------------------------------------|-------------------|------------------------------------------------------------------------------|
| HPGe            | <ul> <li><sup>238</sup>U, <sup>235</sup>U, <sup>232</sup>Th</li> <li>chains, <sup>40</sup>K, <sup>60</sup>Co,</li> <li><sup>137</sup>Cs (any γ emitter)</li> </ul> | 50 ppt U,<br>100 ppt Th          | kg             | Non-<br>destructive                  | Up to 2 weeks     | Very versatile, not as<br>sensitive as other<br>techniques, large<br>samples |
| ICP-MS          | <sup>238</sup> U, <sup>235</sup> U and<br><sup>232</sup> Th (top of<br>chain)                                                                                      | 10 <sup>-12</sup> g/g            | mg to g        | Destructive                          | Days              | Requires sample<br>digestion, preparation<br>critical                        |
| Rn<br>Emanation | <sup>222</sup> Rn, <sup>220</sup> Rn                                                                                                                               | 0.1 mBq                          | kg             | Non-<br>destructive                  | Days to weeks     | Large samples, limited by size of emanation                                  |



#### **Boulby Underground Laboratory**

#### Long Dark Matter history

- ZEPLIN programme
- Directionality (DRIFT)

#### Major lab upgrade

 Dedicated Low Background Counting Facility





### **Boulby Underground Germanium Suite (BUGS)**

Four detectors in Class 10,000 clean room



- Operations
  - Automated LN2 fills
  - Remote control, env. monitoring
  - Emergency systems, UPS
- Interchangeable Pb+Cu castles
  - Interlocking retractable roof
  - N2 purge fed through Pb/Cu to cavity



**UC** 







#### 0.8 kg ULB BE5030 10 keV threshold

2 kg ULB Ortec GEM-XX-95







1.5 kg ULB SAGe 28 mm X 40 mm well ULB BE2825 0.4 kg pre-screener



# 

#### **Analysis Software**



Select All

#### Default Background Values: Chaloner

|    | Energy (keV) | Parent | Daughter | Branching Ratio | BackRate (mBq) | Error (mBq) | Background  | Fit Sigma | Include Report |
|----|--------------|--------|----------|-----------------|----------------|-------------|-------------|-----------|----------------|
| 26 | 238.60       | Th-232 | Pb-212   | 43.6            | 0.092          | 0.009       | 0           | 5         |                |
| 27 | 727.30       | Th-232 | Bi-212   | 6.74            |                |             | 0           | 5         |                |
| 28 | 1620.7       | Th-232 | Bi-212   | 1.52            |                |             | 0           | 5         |                |
| 29 | 583.20       | Th-232 | TI-208   | 85.1            | 0.033          | 0.005       | 0           | 5         |                |
| 30 | 860.60       | Th-232 | TI-208   | 12.5            |                |             | 0           | 5         |                |
| 31 | 2614.5       | Th-232 | TI-208   | 99.7            | 0.016          | 0.004       | 0           | 5         |                |
| 32 | 1460.8       | K-40   | K-40     | 10.7            | 0.107          | 0.009       | 0           | 10        |                |
| 33 | 1173.2       | Co-60  | Co-60    | 99.9            | 0.039          | 0.006       | 0           | 5         |                |
| 34 | 1332.5       | Co-60  | Co-60    | 99.9            | 0.022          | 0.004       | 0           | 5         |                |
| 35 | 143.80       | U-235  | U-235    | 11.0            | 0.084          | 0.008       | 0           | 5         |                |
| 36 | 185.70       | U-235  | U-235    | 57.2            |                |             | 0           | 5         |                |
| 37 | 661.70       | Cs-137 | Cs-137   | 85.0            |                |             | 0           | 5         |                |
|    |              | 1      |          | 1               |                | a P. Patio  | Cubtract R  | ockaround | Create Benert  |
|    |              |        |          |                 | V Us           | se B. Hatio | Subtract Ba | ackground | Greate Repor   |





#### Simulations

- Modeled detectors 'bottom-up' with engineering drawings
- Calibrated with detector scans, validated with sources
- GEANT4 based simulation integrated into analysis software



#### Efficiency

| Isotope  | Chaloner<br>Bq/kg | Lunehead<br>Bq/kg | IAEA<br>Recommended     |
|----------|-------------------|-------------------|-------------------------|
| TI-208   | 9.87 ± 0.13       | $10.24 \pm 0.16$  | 11.6 ± 2.1              |
| Pb-210   | 39.39 ± 0.44      | -                 | 35.5 ± 3.9              |
| Bi-212   | 33.87 ± 0.77      | $34.57 \pm 0.92$  | $34.2 \pm 4.0$          |
| Bi-214   | 17.80 ± 0.40      | 18.49 ± 0.48      | 19.6 ± 1.6              |
| Pb-214   | 20.84 ± 0.13      | $21.05 \pm 0.19$  | 21.6 ± 1.2              |
| Ac-228   | 29.45 ±0.37       | $31.23 \pm 0.53$  | 31.5 ± 1.4              |
| Th-234   | 30.73 ± 0.31      | -                 | 28.7 ± 5.9              |
| K-40     | 563.07 ± 2.18     | 557.69 ± 2.45     | 611.0 ± 11.0            |
| Cs-137   | 20.85 ± 0.11      | $20.66 \pm 0.13$  | 21.74 ± 1.78            |
| Isotope  | Chaloner<br>Bq/kg | Lunehead<br>Bq/kg | Rhyolite<br>Recommended |
| Th232    | 45.00 ± 0.25      | 43.07 ± 0.08      | 48.47 ± 1.88            |
| U238 (e) | 98.01 ± 2.72      | $116.37 \pm 0.96$ | 117.22 ± 15.21          |
| U238 (I) | 97.00 ± 0.61      | 94.47 ± 0.10      | 103.68 ± 12.55          |
| K40      | 870.16 ± 4.47     | 881.61 ± 0.79     | 904.94 ± 73.50          |



#### **Status of BUGS**

- Chaloner and Lunehead installed Sept 2014
- Approximately 50 ppt U/Th sensitivity achieved
- QR code sample tracking system in-place, results fed to LZ database
- LZ material screening initiated
  - Screening schedule integrated into project
  - Live-time requirements informed by Monte Carlo
- Lumpsey and Wilton on-line May/June 2015
- Neutron moderator, enclosures, scintillator installation mid-2015



#### **Mass Spectrometry at UCL**

- New Agilent 7900 ICP-MS mainframe procured exclusively for ultra-low background assays
- Installed and commissioned at UCL Aug 2014
- Standard detection sensitivity at ~ppt for U/Th
- Upgraded Feb 2015
  - HF capability (30%), microflow nebulizer, Pt skimmer/sampling cones
  - Reaction cell (H2) discrimination capability in addition to no gas, and He mode KED
- Presently in HEP lab at UCL, to be moved with sample preparation equipment to dedicated LZ ICP-MS lab (class 10K clean room)







#### **ICP-MS Sample Preparation**

- Milestone EthosUP digestion system
  - > No hot plate; high T/P; reduces digestion to mins.
  - > ensures full recoveries
  - no cross-contamination
- Pyro-260 microwave ashing system (PTFE, acrylics, ...)
- Acid distillation and reflux cleaning systems
- Reproducible, high throughput closed system screening
- Installation in UCL cleanroom April 2015
- Digestions routines under development with Analytix
  - IAEA385 standard (soil)
  - Ti
  - PTFE
  - R11410 PMT components







#### **ICP-MS Sample Preparation**

Microwave digestion (with D. Rowe, Milestons UK Product Manager at Analytix Ltd's facility)

- High pressure reactors constructed from materials transparent to microwaves
- Microwave energy couples directly to ions, rotates around the dipole to cause friction and release heat (hence TFM, etc; low or no dipole moment)
- Acids have higher dipole moments, absorb microwaves readily, for fast and even heating of reactant solutions
- Reaction sped up with HP closed vessel; acids to be heated beyond boiling points
- For PMT components used 220C with mixture of Nitric, Hydrochloric and Hydrofluoric acids to fully dissolve materials
- Optimised ratio and quantity of acid required for complete dissolution of samples
- Each acid has specific purpose during digestion, optimisation required:
  - Nitric acid commonly used to digest any organic material present (CH<sub>2</sub>)<sub>X</sub> + HNO<sub>3</sub> → CO<sub>2</sub>(g) + NO<sub>X</sub>(g) + H<sub>2</sub>O
  - > HCl for Fe-based alloys due to ability to hold high chloro-complex in solution
  - HF acid used for decomposing silicates

#### **ICP-MS Sample Preparation**



| Sample                                | Weight  | Acids                   |
|---------------------------------------|---------|-------------------------|
| 1 Quartz Plate                        | 0.200g  | 4ml HF                  |
| 3 Kovar Sheet                         | 0.492g  | 3ml HCl 3ml HF 3ml HNO3 |
| 3 Kovar Sheet                         | 0.469g  | 3ml HCl 3ml HF 3ml HNO3 |
| 4 Cobalt free metal sheet             | 0.491g  | 3ml HCl 3ml HF 3ml HNO3 |
| 4 Cobalt free metal sheet             | 0.490g  | 3ml HCl 3ml HF 3ml HNO3 |
| 6 Stainless steel sheet (mat surface) | 0.475g  | 3ml HCl 3ml HF 3ml HNO3 |
| 6 Stainless steel sheet (mat surface) | 0.488g  | 3ml HCl 3ml HF 3ml HNO3 |
| 7 Stainless steel sheet (mat surface) | 0.477g  | 3ml HCl 3ml HF 3ml HNO3 |
| 7 Stainless steel sheet (mat surface) | 0.461g  | 3ml HCl 3ml HF 3ml HNO3 |
| 8 Quartz insulator                    | 0.1966g | 4ml HF                  |
| 10 Kovar sheet                        | 0.482g  | 3ml HCl 3ml HF 3ml HNO3 |
| 10 Kovar sheet                        | 0.498g  | 3ml HCl 3ml HF 3ml HNO3 |



Int T (thermocouple) Int P (transducer) Ext T (infra-red) Microwave power



### Radon Emanation Detector at UCL (MSSL)

...see Xin Ran Liu's talk

- Radon cannot be "fiducialised" away
- Sensitivity at ~0.1 mBq required
- System developed for SuperNEMO
- Silicon PIN diode in 70 litre electro-polished vessel
- Connected to radon concentration line
- Emanation chamber for screening components





#### **Radon Emanation Sensitivity**

- Regular calibration with <sup>226</sup>Ra 'flow-through' source
- High efficiency,  ${}^{214}Po = 31.6 \pm 1.6\%$
- Samples prepared in clean room, UV inspection
- Emanation sensitivity (90% C.L.)

><sup>214</sup>Po < 90 μBq ><sup>218</sup>Po < 120 μBq





#### Summary

#### **Direct Gamma Counting**

- Required for U/Th mid-late chain measurements
  - Boulby Underground Laboratory facility with 4 ULB counters
  - Varied detector types provide range for sample types and sub-chain sensitivity
  - Detectors integrated into LZ screening program

#### **Mass Spectrometry**

- Required for progenitor U/Th measurements and high throughput
  - Dedicated ultra-low background ICP-MS facility
  - Agilent 7900 ICP-MS with HF and H<sub>2</sub> line reaction capability
  - Microwave digestion and ashing closed, clean systems for sample prep
  - LZ construction material screening initiated

#### Radon

- Required for <sup>222</sup>Rn and <sup>220</sup>Rn; backgrounds impervious to self-shielding
  - Radon emanation measurement capability to <90 µBq</li>
  - SuperNEMO demonstrator on-line screening