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Early evidence for Dark Matter

3

✤ Fritz Zwicky (1930s) and Vera Rubin (1970s) measure rotational velocities of galaxies and clusters!
✤ Expect Keplerian fall-off, but observe flat rotation curves !

! → Galaxies are rotating too fast!

! → Implies presence of much more mass in systems!
!
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Much much more evidence since then

4

Gravitation lensing

D. Clowe, et al

CMB + BAO: precision tests of ΛCDM

Planck Collaboration: Cosmological parameters

Fig. 1. Planck foreground-subtracted temperature power spectrum (with foreground and other “nuisance” parameters fixed to their
best-fit values for the base ⇤CDM model). The power spectrum at low multipoles (` = 2–49, plotted on a logarithmic multi-
pole scale) is determined by the Commander algorithm applied to the Planck maps in the frequency range 30–353 GHz over
91% of the sky. This is used to construct a low-multipole temperature likelihood using a Blackwell-Rao estimator, as described
in Planck Collaboration XV (2013). The asymmetric error bars show 68% confidence limits and include the contribution from un-
certainties in foreground subtraction. At multipoles 50  `  2500 (plotted on a linear multipole scale) we show the best-fit CMB
spectrum computed from the CamSpec likelihood (see Planck Collaboration XV 2013) after removal of unresolved foreground com-
ponents. The light grey points show the power spectrum multipole-by-multipole. The blue points show averages in bands of width
�` ⇡ 31 together with 1� errors computed from the diagonal components of the band-averaged covariance matrix (which includes
contributions from beam and foreground uncertainties). The red line shows the temperature spectrum for the best-fit base ⇤CDM
cosmology. The lower panel shows the power spectrum residuals with respect to this theoretical model. The green lines show the
±1� errors on the individual power spectrum estimates at high multipoles computed from the CamSpec covariance matrix. Note the
change in vertical scale in the lower panel at ` = 50.
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Chapter 2. A Review of the Evidence for Dark Matter and Possible Candidates

Figure 2.5: Galaxy distribution from spectroscopic redshift surveys (blue) [20, 21, 22]
in comparison to data obtained from cosmological N-body simulations (red) [23]. As
presented in Ref. [19].

All of the structures imprinted in the CMB help to constrain the fraction of each

individual constituent contributing to the overall mass-energy density of the Universe.

Extensive N-body simulations probe these parameter constraints, by studying the

formation of large scale structures via gravitational interaction of dark matter under

the ⇤CDM paradigm. Figure 2.5 shows a comparison (for a selected part of the sky) of

results obtained from the Millennium simulation [19] to experimentally measured galaxy

distributions such as from the Two Degree Field Galaxy Redshift Survey (2dFGRS) [20]

and the Sloan Digital Sky Survey (SDSS) [21]. The observed features are strikingly

similar, backing a cold dark matter framework leading to the formation of large scale

structures visible today.

2.2.5 Big-Bang nucleosynthesis

An indirect determination of the dark matter mass fraction in the Universe comes from

the measurement of light element abundances. These light elements are produced in

the early Universe through Big-Bang Nucleosynthesis (BBN), constraining the baryon

to photon ratio observed today.

The early Universe (t < 1 s) was dominated by relativistic particles in thermal

equilibrium supporting continuous weak and electromagnetic interactions. At t ' 1 s

14

Large scale structure → CDM

Chapter 2. A Review of the Evidence for Dark Matter and Possible Candidates

Figure 2.1: Constraints of the ⌦⇤ – ⌦
m

plane in the ⇤CDM model by combination
of type Ia supernovae (SNe), Cosmic Microwave Background (CMB) and Baryonic
Acoustic Oscillations (BAO) measurements. The shaded areas represent 68.3%, 95.4%
and 99.7% confidence regions. The line indicates the division between an open and a
closed Universe [11].
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1.1.3 Cosmological Scales: Big Bang Nucleosynthesis, Cosmic Microwave

Background

Big Bang Nucleosynthesis

By knowing (or assuming) the conditions of the early universe and relevant nuclear cross-

sections, it is possible to infer the primordial abundances of the light elements. Big Bang

Nucleosynthesis (BBN) is the synthesis of the light nuclei, deuterium, 3He, 4He, and 7Li,

during the first few minutes after the Big Bang. Theoretical predictions of the light element

abundances at the time of nucleosynthesis depend on the baryon density (the density of

protons and neutrons) today since we know how those densities scale as universe evolves.

Hence, the predictions of light element abundances are able to constraint the baryon density

Figure 1.5: Constraints on the baryon density from Big Bang Nucleosynthesis (BBN) [Burles

et al., 1999]. Predictions are shown for four light elements - 4He, D, 3He, and 7Li - spanning

a range of 10 orders of magnitude. The solid vertical band is fixed by measurements of

primordial deuterium. The boxes are the observations; there is only an upper limit on the

primordial abundance of 3He.
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Dark Matter properties

✤ Interacts only weakly with normal matter!

✤ Expected to be neutral in most scenarios!

✤ Cold: Non-relativistic freeze-out!

✤ WIMPs favoured candidates for Cold Dark Matter                             
(alternatives: axions, sterile neutrinos, ...)!

✤ Requires beyond standard model physics:!
✤ Super-symmetry: LSP neutralino, 10-40 to 10-50 cm2,                                                             

Mass range GeV→TeV!

✤ Universal Extra Dimensions: Stable KK, similar detection properties as neutralino

8
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Detecting Dark Matter
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Direct detection of galactic dark matter
✤ Elastic scattering of galactic WIMPs off 

target nuclei in terrestrial detector!

✤ WIMP speed ~ 220 km/s                            
expect recoils O(10 keV)!

✤ Spin-independent cross section ∝ A2!

✤ Expect ~ 1 event/kg/year!

✤ Requires SM backgrounds ~0 
(underground operation)
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Figure 1. Predicted integral spectra for WIMP elastic scattering (left) and for coherent neutrino-nucleus
elastic scattering (right) for Xe, Ge, Ar and Ne (in order of decreasing rate at zero threshold). Both plots
assume perfect energy resolution. Dark matter rates are for a 100 GeV/c2 WIMP with 10�45cm2 (10�9 pb)
interaction cross section per nucleon, calculated as per [21] with the halo parameters shown; the markers
indicate typical WIMP-search thresholds for each technology. CNS rates are calculated at 10 m from a
3 GWth nuclear reactor (4 ·1013

n/cm2/s) and at the same distance from the ISIS neutron spallation source
(thanks to E. Santos), where 3 neutrino flavors result from pion and muon decay at rest (1 ·107

n/cm2/s for
all flavors [34]).

quarks: for neutrons it is s

n ,n ⇡ 0.42 · 10�44(E
n

/MeV)2 cm2, whereas for protons it is a factor
of ⇠200 smaller. Therefore, the effect of coherence over the whole nucleus is an enhancement
factor of N2. For example, for 10 MeV neutrinos, the cross section for scattering on a Xe nucleus
is s

n ,Xe ⇠ 2 ·10�39 cm2; for Ar it is an order of magnitude smaller, s

n ,Ar ⇠ 2 ·10�40 cm2. Although
these values are even smaller than those expected for WIMPs, significantly higher fluxes can be ob-
tained with neutrinos from artificial sources (⇠1013 cm�2s�1 at a distance of ⇠10 m from a nuclear
reactor, to give one example). Calculated rates as a function of threshold for two neutrino sources
are shown in Figure 1 (right). In addition, ‘on/off’ experiments are also possible in this instance,
which is a significant advantage for controlling systematic uncertainties. Therefore, detectors with
a mass of the order of kilograms can, in principle, provide a reasonable rate. However, one must
not neglect the fact that, contrary to WIMP searches, where only a few events with correct signa-
ture could constitute a discovery in a nearly background-free experiment conducted underground,
a neutrino experiment in a surface laboratory must accumulate enough recoil signals to produce
a statistically significant distribution in energy (or in the number of ionization electrons, as only
few-electron signals can be expected for MeV neutrinos [24, 36, 37]).

The low scattering rate makes the background issue of extreme importance. Background re-
duction (passive shielding, low radioactivity environment and radio-clean construction) and its
active discrimination in the experimental setup are essential. In the case of direct dark matter
searches in underground laboratories, two kinds of background can be distinguished: one resulting
in electron recoils and the other leading to production of nuclear (atomic) recoils in the sensitive

– 6 –
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Direct detection techniques

✤ Requirements: large mass, low-radioactivity, low-energy threshold,        
high acceptance, discrimination

11
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Figure 1.11: Past and present direct WIMP searches classified by the excitation channels

measured. Figure from [Plante, 2012].

discrimination ability between WIMPs and electromagnetic background can be improved

significantly. Since the interactions in the detection medium depend on the incident particle

type and its energy, electromagnetic background interactions deposit energy in the detection

medium in a different manner than do WIMP interactions. This results in the energy

deposit partition through different channels of electromagnetic background interactions to

be different than that from WIMP-induced interactions. Hence, the ratio of signal from

one channel to signal from the other channel can be used as a good discriminant for the

electromagnetic background rejection. A good example is making use of ionization signals in

a solid-state detector by applying electric field, in addition to the use of the phonon signal.

The Cryogenic Dark Matter Search (CDMS II) had reported discrimination of WIMP-like

signal from electromagnetic background with a rejection power of > 104, using the ratio of

ionization signal to the phonon signal [Ahmed et al., 2009].
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WIMP search status < 30th October 2013
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The Large Underground Xenon 
(LUX) experiment

14

The worlds largest dual-phase xenon 
time-projection chamber
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The LUX collaboration 
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Sanford Underground Research Facility (SURF)
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Former Homestake gold mine - 
refurbished for science only

Lead, SD, located in Black Hills

Muon flux at 4850’ 
level reduced by 107 

55.2 m−2s−1 → 
1×10−5 m−2s−1
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LUX in the Davis Cavern
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S. Fiorucci – Brown University  20 

Sanford Lab – Davis Laboratory 
Clean Room 

Control Room LN Storage 

Counting Facility 
Xe Balloon 

Gas System 

Electronics 

Cherenkov Water tank 

LUX Detector 

Breakout 
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An ultra low background environment
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2.
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1.

2 
m

3.5 m

Water tank

Cryostat

Source tubes

Breakout cart
Thermosyphon

Figure 3: Overview of the LUX detector system installed in the Davis
Cavern. Shown are the water tank and the central cryostat. The PMTs of
the muon-veto system are not shown.

7
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The LUX cryostat
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Top thermosyphon Feedthroughs

Anode and electron
extraction grids

Xenon recirculation
and heat exchanger

300 kg active liquid xenon

Cathode grid

Photomultiplier tubes

Titanium cryostats

PTFE reflector panels

Bottom thermosyphon

Figure 5: Cross-sectional view of the LUX cryostats. The vertical distance
between the inner faces of the top and bottom PMT arrays is 61.6 cm.

9

Hamamatsu R8778 PMTs (61 top, 61 bottom)

250 kg active
(370 kg total)

Low background titanium
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The active region of LUX
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PTFE 
reflector 
panels

Top
grids

Bottom
grids

Bottom PMT array

Top PMT array

61
.6

 c
m

Gamma 
shield

Gamma 
shield

Field
rings

Figure 7: Rendering of the LUX TPC, supported from the top flange of
the inner cryostat.

3.3. Grids, fields, and light reflecting cage

The LUX Time-Projection Chamber (TPC) is a dodecagonal structure enclosing an

active region with approximately 300 kg of liquid xenon. The active region is viewed

from above and below by arrays of 61 PMTs, as illustrated in Fig. 7. Monte Carlo

optimization of background rejection and fiducial volume resulted in a design with a

drift distance of 49 cm, a diameter of 50 cm, and a buffer distance of 5 cm between the

cathode and the bottom PMT array. The inner walls of the TPC consist of twelve poly-

tetrafluoroethylene (PTFE) reflector panels that cover forty-eight copper field rings,

supported by Ultra High Molecular Weight Polyethylene (UHMW) panels. All PTFE

components are made from ultrahigh purity grade materials and all copper components

are C101 OFHC grade. The field cage includes five grids, supported by PTFE struc-

tures, that maximize light collection and minimize the leakage of scintillation light

from xenon outside the TPC into the viewing region. The entire structure is supported

12

47 cm

49
 cm

250 kg 
xenon in 
active 
region
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Principle of detection: dual phase xenon TPC
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Principle of detection: dual phase xenon TPC
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Principle of detection: dual phase xenon TPC

22

Chapter 4. The ZEPLIN–III Experiment

Figure 4.7: Flowchart of the two processes creating a primary scintillation signal in
an elastic recoil in liquid xenon. In the primary interaction both excited and ionised
Xe atoms are created. The two branches produce, in their final stages, excited dimer
states responsible for the typical scintillation light of the noble gas (� = 178 nm).
Transparency of the medium to its own scintillation light, i.e. the energy of the emitted
photons is less than the energy di↵erence between the ground state (of the two separated
atoms) and the first atomic excited state, ensures good light collection.

regions without the need for any physical barriers. Comprehensive overviews of the

properties of liquid xenon and its utilisation in noble gas detectors are given in Refs. [72,

83].

4.2.1 The primary scintillation signal

The scintillation light produced in a particle interaction within the liquid xenon is

attributed to two separate processes involving excited atoms and ions. A flow chart of

the individual processes, both resulting in the production of VUV scintillation photons

and their interconnection, is shown in Fig. 4.7 [126, 127].

Firstly, direct excitation takes place resulting in excitation luminescence by the

de-excitation of singlet and triplet states of the created excimer Xe⇤2, see Eq. (4.3).

The transition of the excited states occurs at short interatomic distance, where the

ground state potential is repulsive and the molecule becomes dissociated. The two

possible de-excitations from the lowest electronic excited states are quite di↵erent in

their characteristic decay time due to the forbidden direct transition of the triplet to

the ground state. The latter becomes possible through spin-orbital coupling and the

52

✤ Primary scintillation (S1) and secondary ionization  
signal from electroluminescence (S2)!

✤ 3D position (mm resolution)!

✤ S2/S1 particle discrimination!

✤ Recoil energy correlated to S1 and S2!

✤ Powerful Xe self-shielding

E. Aprile et al., Phys. Rev. Lett. 97, 081302 (2006)
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LUX supporting systems
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Circulation gas and sampling 

S. Fiorucci – Brown University  9 

LUX Design – Supporting Systems 

Thermosyphon

Xe storage
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Cathode HV feedthrough
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Kr removal facility

S. Fiorucci – Brown University  10 

LUX Krypton Removal System 

�85Kr - beta decay – intrinsic background in liquid Xe 
� Research grade Xenon: ~100 ppb Kr => 104 - 105 reduction needed 

�August 2012 - January 2013: Kr removal at dedicated facility 
� Chromatographic separation system 

�Kr concentration reduced from 130 ppb to 3.5 ± 1 ppt, (factor of 35000) 
� 1 ppt is achievable (useful for next-generation detectors) 

arXiv:1103.2714 

130 ppb to 3.5 ppt!
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Calibrating LUX
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 SolidWorks Student License
 Academic Use Only

Figure 10: Rendering of the six source tubes surrounding the central LUX
cryostat. The top two sections of each source tube are made of steel; the
bottom section is made of clear acrylic. Clear acrylic water displacers are
installed in front of the active xenon volume to limit source attenuation.

22

✤ External sources via source tubes:!

✤ Americium-beryllium (AmBe) and 252Cf: low energy neutrons                                   
→ validating NR models and detector sims, NR efficiencies!

✤ Xenon self-shielding → internal sources injected into circulation system:!

✤ 83mKr: half-life ~1.8 hours, 32.1 + 9.4 keV betas                                                                 
→ weekly purity & xyz maps;  drift length >130 cm!

✤ Tritiated methane (CH3T): low energy betas (end point 18 keV)                              
High stats, uniform and high purity → ER band, ER acceptance

WIMP-like
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First dark matter results from 
LUX

25
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Run 3 data-taking
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S. Fiorucci – Brown University  24 

LUX Run 3: Some Statistics 

85.3 live days DM search CH3T 
AmBe 
252Cf 

83mKr, AmBe 
Finalizing run 
parameters 

�Since June 2010: 2200 person.days at surface + 910 person.days UG 

�Detector cool-down January 2013, Xe condensed mid-February 2013 

�95% Data taking efficiency during WIMP search period (minus storms) 

�Waited until after WS data before precision CH3T calibration 

✤ LUX moves underground in July 2012!

✤ Detector cool-down January 2013, Xe condensed mid-February 2013!

✤ Kr and AmBe calibrations throughout, CH3T after WIMP search
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A  LUX event - 1.5 keV electron recoil

27
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Position reconstruction
✤ Drift time (1.5 mm/#s) for Z-position, !

✤ XY position fitting S2 hit pattern with LRFs from internal calibrations

28

5 mm

Projection along the wires
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Backgrounds in LUX
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The most radioactively quiet place in the world!
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…and still dropping!

30

lo
g1

0 
ev

ts
/k

eV
ee

/k
g/

da
y

118 kg  
3.1+/-0.2 mdru"
r<18 cm"
z=7-47 cm



Slide C. Ghag  !  University College London  !  24 April 2014

Light and charge yields
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Very conservative! Photon detection efficiency: 14% 

Charge yield: 26 phe/e-
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Tritium Calibration
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241AmBe & 252Cf calibration
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NeutronX and multiple scatters in 
calibration, but not WIMP data
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Calibrations
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(a) Tritium ER Calibration
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FIG. 3. Calibrations of detector response in the 118 kg fiducial
volume. The ER (tritium, panel a) and NR (AmBe and 252Cf,
panel b) calibrations are depicted, with the means (solid line)
and ±1.28� from Gaussian fits to slices in S1 (dashed line).
This choice of band width (indicating 10% band tails) is for
presentation only. Panel a shows fits to the high statistics
tritium data, with fits to simulated NR data shown in panel
b, representing the parameterizations taken forward to the
profile likelihood analysis. The ER plot also shows the NR
band mean and vice versa. Gray contours indicate constant
energies using an S1–S2 combined energy scale (same contours
on each plot). The dot-dashed magenta line delineates the
approximate location of the minimum S2 cut.

calibrations therefore include systematic e↵ects not
applicable to the WIMP signal model, such as multiple-
scattering events (including those where scatters occur
in regions of di↵ering field) or coincident Compton
scatters from AmBe and 252Cf �-rays and (n,�) reactions.
These e↵ects produce the dispersion observed in data,
which is well modeled in our simulations (in both
band mean and width, verifying the simulated energy
resolution), and larger than that expected from WIMP
scattering. Consequently, these data cannot be used
directly to model a signal distribution. For di↵erent
WIMP masses, simulated S1 and S2 distributions are
obtained, accounting for their unique energy spectra.

The ratio of keV
ee

to nuclear recoil energy (keV
nr

)
relies on both S1 and S2, using the conservative technique
presented in [29] (Lindhard with k = 0.11). NR data
are consistent with an energy-dependent, non-monotonic
reduced light yield with respect to zero field [30] with
a minimum of 0.77 and a maximum of 0.82 in the
range 3–25 keV

nr

[23]. This is understood to stem from
additional, anti-correlated portioning into the ionization
channel.

The observed ER background in the range 0.9–
5.3 keV

ee

within the fiducial volume was 3.1 ±
0.2 mDRU

ee

averaged over the WIMP search dataset
(summarized in Table I). Backgrounds from detector
components were controlled through a material screening
program at the Soudan Low-Background Counting

TABLE I. Predicted background rates in the fiducial volume
(0.9–5.3 keVee) [31]. We show contributions from the �-
rays of detector components (including those cosmogenically
activated), the time-weighted contribution of activated
xenon, 222Rn (best estimate 0.2 mDRUee from 222Rn chain
measurements) and 85Kr. The errors shown are both
from simulation statistics and those derived from the rate
measurements of time-dependent backgrounds. 1 mDRUee is
10�3 events/keVee/kg/day.

Source Background rate, mDRUee

�-rays 1.8± 0.2stat ± 0.3sys
127Xe 0.5± 0.02stat ± 0.1sys
214Pb 0.11–0.22 (90% C. L.)
85Kr 0.13± 0.07sys

Total predicted 2.6± 0.2stat ± 0.4sys

Total observed 3.1± 0.2stat

Facility (SOLO) and the LBNL low-background counting
facility [13, 26, 32]. Krypton as a mass fraction of xenon
was reduced from 130 ppb in the purchased xenon to
4 ppt using gas charcoal chromatography [33].

Radiogenic backgrounds were extensively modeled
using LUXSim, with approximately 80% of the low-
energy �-ray background originating from the materials
in the R8778 PMTs and the rest from other construction
materials. This demonstrated consistency between the
observed �-ray energy spectra and position distribu-
tion [31], and the expectations based on the screening
results and the independent assay of the natural Kr
concentration of 3.5 ± 1 ppt (g/g) in the xenon gas [34]
where we assume an isotopic abundance of 85Kr/natKr
⇠ 2 ⇥ 10�11 [31]. Isotopes created through cosmogenic
production were also considered, including measured
levels of 60Co in Cu components. In situ measurements
determined additional intrinsic background levels in
xenon from 214Pb (from the 222Rn decay chain), and
cosmogenically-produced 127Xe (T

1/2

= 36.4 days),
129mXe (T

1/2

= 8.9 days), and 131mXe (T
1/2

=
11.9 days). The rate from 127Xe in the WIMP search
energy window is estimated to decay from 0.87 mDRU

ee

at the start of the WIMP search dataset to 0.28 mDRU
ee

at the end, with late-time background measurements
being consistent with those originating primarily from
the long-lived radioisotopes.

Neutron backgrounds in LUX were constrained by
multiple-scatter analysis, with a conservative 90% upper
C.L. placed on the number of expected neutron single
scatters with S1 between 2 and 30 phe of 0.37 in
the 85.3 live-day dataset, with simulations predicting a
considerably lower value of 0.06 events.

We observed 160 events between 2 and 30 phe (S1)
within the fiducial volume in 85.3 live-days of search
data (shown in Fig. 4), with all observed events being
consistent with the predicted background of electron
recoils. The average discrimination (with 50% NR
acceptance) for S1 from 2-30 phe is 99.6 ± 0.1%, hence
0.64 ± 0.16 events from ER leakage are expected below
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Discrimination

✤ For 50% NR acceptance at 181 V/cm average discrimination 99.6%
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S1 efficiency 
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✤ Independent measures using AmBe, tritium, LED calibrations and full 
MC simulation of NR events (includes analysis cuts)

 o  LUX AmBe Neutron Calibration S1 data (lhs)

– Monte Carlo S1 LUXSim/NEST (lhs)
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NR acceptance
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FIG. 4. WIMP detection e�ciency as a function of nuclear recoil energy for events with a corrected S1 between 2 and 30 phe

and a S2 signal greater than 200 phe (black +). This e�ciency is used directly in the profile likelihood analysis. In addition, we

show the e�ciency for individually detecting an S2 (red squares) or S1 (blue circles) signal, respectively, without the application

of any analysis thresholds. The detection e�ciency for single scatter events (again applying no threshold cuts), shown by the

green triangles, clearly demonstrate the dominant impact of the S1-only e�ciency.
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FIG. 5. Plot showing the leakage fraction (discrimination level) between electron and nuclear recoil populations, with 50%

nuclear recoil acceptance (as calculated from flat-in-energy NR simulations), measured with the high-statistics tritium data.

We show the leakage from counting events in the dataset (black circles) and from projections of Gaussian fits to the electron

recoil population (red squares). An upper limit is shown for S1 bins without events. The blue dashed line indicates the total

leakage fraction, 0.004, in the S1 range 2-30 phe. The leakage fraction is not used directly in the estimation of the WIMP

signal.
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FIG. 5. Plot showing the leakage fraction (discrimination level) between electron and nuclear recoil populations, with 50%

nuclear recoil acceptance (as calculated from flat-in-energy NR simulations), measured with the high-statistics tritium data.

We show the leakage from counting events in the dataset (black circles) and from projections of Gaussian fits to the electron

recoil population (red squares). An upper limit is shown for S1 bins without events. The blue dashed line indicates the total

leakage fraction, 0.004, in the S1 range 2-30 phe. The leakage fraction is not used directly in the estimation of the WIMP

signal.

PLR input

→ 17 % @ 3 keVnr 

→ 50 % @ 4.3 keVnr 
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I. SUPPLEMENTARY MATERIAL

This document contains supplementary material in support of [1]. We show details of:

• Figure 1 – the matching of AmBe MC simulations and data in the ionization channel.

• Table I – the number of events in the WIMP search dataset, following the application of each set of cuts.

• Figures 2 and 3 – the observed and expected background energy spectra at high and low energy.

• Figure 4 – the detection e�ciencies as a function of nuclear recoil energy.

• Figure 5 – the discrimination/leakage fraction of ER to NR signals as a function of S1.
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FIG. 1. Comparison of Am-Be data (blue circles) to Monte Carlo simulations (blue line) in terms of the S2 signal for single

nuclear recoil scatter events. This is the complementary plot for Fig. 1 in [1]. The experimental data shows good agreement

with the simulations above ⇠ 20 extracted electrons, at lower energies the data is a↵ected by the S1 detection e�ciency. This

demonstrates that not only the light yield but also the charge yield data is well described by the NEST simulation, used in the

PLR to model signal as a function of WIMP mass.

Cut Events Remaining

all triggers 83,673,413

detector stability 82,918,902

single scatter 6,585,686

S1 energy (2� 30 phe) 26,824

S2 energy (200� 3300 phe) 20,989

single electron background 19,796

fiducial volume 160

TABLE I. Number of events remaining after each analysis cut. All of these cuts are commutative, the order indicating the

order in which the cuts are applied in the analysis. Detector stability cuts remove periods of live-time when the liquid level,

gas pressure, or grid voltages were out of nominal ranges. The single scatter cut keeps only events containing one S1 and one

S2 pulse, representative of expected elastic scattering of WIMPs. S1 and S2 energy cuts keep only those events in the WIMP

search energy range. Additionally, the S2 energy threshold of 200 phe removes single-extracted-electron-type events and events

with unreliable position reconstruction. Periods of live-time with high rates of single electron backgrounds are then removed.

The fiducial volume cut selects only those events with reconstructed radius less than 18 cm, and electron drift time between 38

and 305 µs. The final number of events in the WIMP search profile likelihood is 160. A more detailed description of the cuts

is provided in [1].

✤ Hardware trigger: at least two trig. channels > 8 phe within 2 #s window 
(8 PMTs per trig. channel)!

✤ > 99% efficient for raw S2 > 200 phe

✤ Non-blind analysis!
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I. SUPPLEMENTARY MATERIAL

This document contains supplementary material in support of [1]. We show details of:

• Figure 1 – the matching of AmBe MC simulations and data in the ionization channel.

• Table I – the number of events in the WIMP search dataset, following the application of each set of cuts.

• Figures 2 and 3 – the observed and expected background energy spectra at high and low energy.

• Figure 4 – the detection e�ciencies as a function of nuclear recoil energy.

• Figure 5 – the discrimination/leakage fraction of ER to NR signals as a function of S1.

re
la

tiv
e 

di
ffe

re
nt

ia
l r

at
e

S2 x,y,z corrected (extracted electrons)
101 102

100

101

102

FIG. 1. Comparison of Am-Be data (blue circles) to Monte Carlo simulations (blue line) in terms of the S2 signal for single

nuclear recoil scatter events. This is the complementary plot for Fig. 1 in [1]. The experimental data shows good agreement

with the simulations above ⇠ 20 extracted electrons, at lower energies the data is a↵ected by the S1 detection e�ciency. This

demonstrates that not only the light yield but also the charge yield data is well described by the NEST simulation, used in the

PLR to model signal as a function of WIMP mass.

Cut Events Remaining

all triggers 83,673,413

detector stability 82,918,902

single scatter 6,585,686

S1 energy (2� 30 phe) 26,824

S2 energy (200� 3300 phe) 20,989

single electron background 19,796

fiducial volume 160

TABLE I. Number of events remaining after each analysis cut. All of these cuts are commutative, the order indicating the

order in which the cuts are applied in the analysis. Detector stability cuts remove periods of live-time when the liquid level,

gas pressure, or grid voltages were out of nominal ranges. The single scatter cut keeps only events containing one S1 and one

S2 pulse, representative of expected elastic scattering of WIMPs. S1 and S2 energy cuts keep only those events in the WIMP

search energy range. Additionally, the S2 energy threshold of 200 phe removes single-extracted-electron-type events and events

with unreliable position reconstruction. Periods of live-time with high rates of single electron backgrounds are then removed.

The fiducial volume cut selects only those events with reconstructed radius less than 18 cm, and electron drift time between 38

and 305 µs. The final number of events in the WIMP search profile likelihood is 160. A more detailed description of the cuts

is provided in [1].

✤ Remove periods of live-time when liquid level, gas pressure or grid 
voltages were out of nominal ranges:!

✤ Less than 1.0 % live-time loss!
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I. SUPPLEMENTARY MATERIAL

This document contains supplementary material in support of [1]. We show details of:

• Figure 1 – the matching of AmBe MC simulations and data in the ionization channel.

• Table I – the number of events in the WIMP search dataset, following the application of each set of cuts.

• Figures 2 and 3 – the observed and expected background energy spectra at high and low energy.

• Figure 4 – the detection e�ciencies as a function of nuclear recoil energy.

• Figure 5 – the discrimination/leakage fraction of ER to NR signals as a function of S1.
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FIG. 1. Comparison of Am-Be data (blue circles) to Monte Carlo simulations (blue line) in terms of the S2 signal for single

nuclear recoil scatter events. This is the complementary plot for Fig. 1 in [1]. The experimental data shows good agreement

with the simulations above ⇠ 20 extracted electrons, at lower energies the data is a↵ected by the S1 detection e�ciency. This

demonstrates that not only the light yield but also the charge yield data is well described by the NEST simulation, used in the

PLR to model signal as a function of WIMP mass.

Cut Events Remaining

all triggers 83,673,413

detector stability 82,918,902

single scatter 6,585,686

S1 energy (2� 30 phe) 26,824

S2 energy (200� 3300 phe) 20,989

single electron background 19,796

fiducial volume 160

TABLE I. Number of events remaining after each analysis cut. All of these cuts are commutative, the order indicating the

order in which the cuts are applied in the analysis. Detector stability cuts remove periods of live-time when the liquid level,

gas pressure, or grid voltages were out of nominal ranges. The single scatter cut keeps only events containing one S1 and one

S2 pulse, representative of expected elastic scattering of WIMPs. S1 and S2 energy cuts keep only those events in the WIMP

search energy range. Additionally, the S2 energy threshold of 200 phe removes single-extracted-electron-type events and events

with unreliable position reconstruction. Periods of live-time with high rates of single electron backgrounds are then removed.

The fiducial volume cut selects only those events with reconstructed radius less than 18 cm, and electron drift time between 38

and 305 µs. The final number of events in the WIMP search profile likelihood is 160. A more detailed description of the cuts

is provided in [1].

✤ Exactly 1 S2 and 1 S1 as identified by the pulse finding/classification:!
✤ Separate S1s from S2s using pulse shape and PMT hit distributions !

✤ S1s identification includes a two fold PMT coincidence requirement!
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I. SUPPLEMENTARY MATERIAL

This document contains supplementary material in support of [1]. We show details of:

• Figure 1 – the matching of AmBe MC simulations and data in the ionization channel.

• Table I – the number of events in the WIMP search dataset, following the application of each set of cuts.

• Figures 2 and 3 – the observed and expected background energy spectra at high and low energy.

• Figure 4 – the detection e�ciencies as a function of nuclear recoil energy.

• Figure 5 – the discrimination/leakage fraction of ER to NR signals as a function of S1.
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FIG. 1. Comparison of Am-Be data (blue circles) to Monte Carlo simulations (blue line) in terms of the S2 signal for single

nuclear recoil scatter events. This is the complementary plot for Fig. 1 in [1]. The experimental data shows good agreement

with the simulations above ⇠ 20 extracted electrons, at lower energies the data is a↵ected by the S1 detection e�ciency. This

demonstrates that not only the light yield but also the charge yield data is well described by the NEST simulation, used in the

PLR to model signal as a function of WIMP mass.

Cut Events Remaining

all triggers 83,673,413

detector stability 82,918,902

single scatter 6,585,686

S1 energy (2� 30 phe) 26,824

S2 energy (200� 3300 phe) 20,989

single electron background 19,796

fiducial volume 160

TABLE I. Number of events remaining after each analysis cut. All of these cuts are commutative, the order indicating the

order in which the cuts are applied in the analysis. Detector stability cuts remove periods of live-time when the liquid level,

gas pressure, or grid voltages were out of nominal ranges. The single scatter cut keeps only events containing one S1 and one

S2 pulse, representative of expected elastic scattering of WIMPs. S1 and S2 energy cuts keep only those events in the WIMP

search energy range. Additionally, the S2 energy threshold of 200 phe removes single-extracted-electron-type events and events

with unreliable position reconstruction. Periods of live-time with high rates of single electron backgrounds are then removed.

The fiducial volume cut selects only those events with reconstructed radius less than 18 cm, and electron drift time between 38

and 305 µs. The final number of events in the WIMP search profile likelihood is 160. A more detailed description of the cuts

is provided in [1].

✤ Accept events with S1 between 2-30 phe (0.9-5.3 keVee, ~3-18 keVnr):!
✤ 2 phe analysis threshold allows sensitivity down to low WIMP masses!

✤ Upper limit avoids 127Xe 5 keVee activation
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I. SUPPLEMENTARY MATERIAL

This document contains supplementary material in support of [1]. We show details of:

• Figure 1 – the matching of AmBe MC simulations and data in the ionization channel.

• Table I – the number of events in the WIMP search dataset, following the application of each set of cuts.

• Figures 2 and 3 – the observed and expected background energy spectra at high and low energy.

• Figure 4 – the detection e�ciencies as a function of nuclear recoil energy.

• Figure 5 – the discrimination/leakage fraction of ER to NR signals as a function of S1.
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FIG. 1. Comparison of Am-Be data (blue circles) to Monte Carlo simulations (blue line) in terms of the S2 signal for single

nuclear recoil scatter events. This is the complementary plot for Fig. 1 in [1]. The experimental data shows good agreement

with the simulations above ⇠ 20 extracted electrons, at lower energies the data is a↵ected by the S1 detection e�ciency. This

demonstrates that not only the light yield but also the charge yield data is well described by the NEST simulation, used in the

PLR to model signal as a function of WIMP mass.

Cut Events Remaining

all triggers 83,673,413

detector stability 82,918,902

single scatter 6,585,686

S1 energy (2� 30 phe) 26,824

S2 energy (200� 3300 phe) 20,989

single electron background 19,796

fiducial volume 160

TABLE I. Number of events remaining after each analysis cut. All of these cuts are commutative, the order indicating the

order in which the cuts are applied in the analysis. Detector stability cuts remove periods of live-time when the liquid level,

gas pressure, or grid voltages were out of nominal ranges. The single scatter cut keeps only events containing one S1 and one

S2 pulse, representative of expected elastic scattering of WIMPs. S1 and S2 energy cuts keep only those events in the WIMP

search energy range. Additionally, the S2 energy threshold of 200 phe removes single-extracted-electron-type events and events

with unreliable position reconstruction. Periods of live-time with high rates of single electron backgrounds are then removed.

The fiducial volume cut selects only those events with reconstructed radius less than 18 cm, and electron drift time between 38

and 305 µs. The final number of events in the WIMP search profile likelihood is 160. A more detailed description of the cuts

is provided in [1].

✤ S2 threshold cuts subdominant to S1:!
✤ 200 phe ~ 8 single electrons!

✤ Removes small S2 edge events and single electron events
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I. SUPPLEMENTARY MATERIAL

This document contains supplementary material in support of [1]. We show details of:

• Figure 1 – the matching of AmBe MC simulations and data in the ionization channel.

• Table I – the number of events in the WIMP search dataset, following the application of each set of cuts.

• Figures 2 and 3 – the observed and expected background energy spectra at high and low energy.

• Figure 4 – the detection e�ciencies as a function of nuclear recoil energy.

• Figure 5 – the discrimination/leakage fraction of ER to NR signals as a function of S1.
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FIG. 1. Comparison of Am-Be data (blue circles) to Monte Carlo simulations (blue line) in terms of the S2 signal for single

nuclear recoil scatter events. This is the complementary plot for Fig. 1 in [1]. The experimental data shows good agreement

with the simulations above ⇠ 20 extracted electrons, at lower energies the data is a↵ected by the S1 detection e�ciency. This

demonstrates that not only the light yield but also the charge yield data is well described by the NEST simulation, used in the

PLR to model signal as a function of WIMP mass.

Cut Events Remaining

all triggers 83,673,413

detector stability 82,918,902

single scatter 6,585,686

S1 energy (2� 30 phe) 26,824

S2 energy (200� 3300 phe) 20,989

single electron background 19,796

fiducial volume 160

TABLE I. Number of events remaining after each analysis cut. All of these cuts are commutative, the order indicating the

order in which the cuts are applied in the analysis. Detector stability cuts remove periods of live-time when the liquid level,

gas pressure, or grid voltages were out of nominal ranges. The single scatter cut keeps only events containing one S1 and one

S2 pulse, representative of expected elastic scattering of WIMPs. S1 and S2 energy cuts keep only those events in the WIMP

search energy range. Additionally, the S2 energy threshold of 200 phe removes single-extracted-electron-type events and events

with unreliable position reconstruction. Periods of live-time with high rates of single electron backgrounds are then removed.

The fiducial volume cut selects only those events with reconstructed radius less than 18 cm, and electron drift time between 38

and 305 µs. The final number of events in the WIMP search profile likelihood is 160. A more detailed description of the cuts

is provided in [1].

✤ Require less than 100 phe (< 4 extracted electrons) of additional signal in 1 
ms period around S1 and S2 signals:!
✤ Simple cut to removes additional single electron events in 0.1-1 ms following 

large S2 signals!

✤ Only 0.8% hit on live-time
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I. SUPPLEMENTARY MATERIAL

This document contains supplementary material in support of [1]. We show details of:

• Figure 1 – the matching of AmBe MC simulations and data in the ionization channel.

• Table I – the number of events in the WIMP search dataset, following the application of each set of cuts.

• Figures 2 and 3 – the observed and expected background energy spectra at high and low energy.

• Figure 4 – the detection e�ciencies as a function of nuclear recoil energy.

• Figure 5 – the discrimination/leakage fraction of ER to NR signals as a function of S1.
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FIG. 1. Comparison of Am-Be data (blue circles) to Monte Carlo simulations (blue line) in terms of the S2 signal for single

nuclear recoil scatter events. This is the complementary plot for Fig. 1 in [1]. The experimental data shows good agreement

with the simulations above ⇠ 20 extracted electrons, at lower energies the data is a↵ected by the S1 detection e�ciency. This

demonstrates that not only the light yield but also the charge yield data is well described by the NEST simulation, used in the

PLR to model signal as a function of WIMP mass.

Cut Events Remaining

all triggers 83,673,413

detector stability 82,918,902

single scatter 6,585,686

S1 energy (2� 30 phe) 26,824

S2 energy (200� 3300 phe) 20,989

single electron background 19,796

fiducial volume 160

TABLE I. Number of events remaining after each analysis cut. All of these cuts are commutative, the order indicating the

order in which the cuts are applied in the analysis. Detector stability cuts remove periods of live-time when the liquid level,

gas pressure, or grid voltages were out of nominal ranges. The single scatter cut keeps only events containing one S1 and one

S2 pulse, representative of expected elastic scattering of WIMPs. S1 and S2 energy cuts keep only those events in the WIMP

search energy range. Additionally, the S2 energy threshold of 200 phe removes single-extracted-electron-type events and events

with unreliable position reconstruction. Periods of live-time with high rates of single electron backgrounds are then removed.

The fiducial volume cut selects only those events with reconstructed radius less than 18 cm, and electron drift time between 38

and 305 µs. The final number of events in the WIMP search profile likelihood is 160. A more detailed description of the cuts

is provided in [1].

✤ 118 kg fiducial volume defined by: !
✤ Z cut: 38 < drift time < 305 #s  (320 #s is max drift time)!

✤ Reconstructed radial position < 18 cm
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✤ After all selection cuts:                                                                                       
160 candidate events in fiducial (r < 18 cm and 7 cm < z < 47 cm)

45
S. Fiorucci – Brown University  44 

LUX WIMP Search, 85.3 live-days, 118 kg 
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For 8.6 GeV WIMP @ 2.0 ×10-41 cm2, 
CDMS II Si (2012) 90% CL

Shift from NR mean due to S1 up-fluctuations 
for fixed S2 → improved ER leakage 

For 1000 GeV WIMP @ 1.9 ×10-44 cm2, XENON100 90% CL:!

→  expect 9 WIMPs in LUX search"
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For 1000 GeV WIMP @ 1.9 ×10-44 cm2, 
XENON100 90% CL:!

→  expect 9 WIMPs in LUX search!
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→   expect 1550 WIMPs in LUX search"For 8.6 GeV WIMP @ 2.0 ×10-41 cm2, 
CDMS II Si (2012) 90% CL ….
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51

✤ Unbinned maximum likelihood compare data with prediction on event 
by event basis.Use an extended likelihood

Observables: x = (S1, log10(S2/S1), r, z)

Parameter of interest: Ns

Nuisance parameters: NCompt, NXe-127, NRn/Kr-85

Energy
Discriminant between ER/NR

Discriminant against 
external/internal radiation

39Gaussian constrain to within 30% of the predicted rates

WIMP signal PDF: !
- WIMP dE/dR for given mass (see earlier)!
- efficiency from validated NR sims !
- Ns is parameter of interest

Backgrounds as nuisance !
parameters:!
     - detector efficiencies included!
     - 30% uncertainty on overall rate !
!

Ratio of this to null hypothesis used to create test statistic and extract 
90% CI upper limit
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Spin-independent sensitivity
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XENON100(2012)-225 live days

LUX (2013)-85 live days: 90% upper limit

→ 10-21 barn! 

Upper limit @ 33 GeV/c2 is 7.6 × 10-46 cm2 
→ first sub-zeptobarn WIMP detector!
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Low-mass WIMPs excluded
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CDMS II Si Favored

CoGeNT Favored

LUX (2013)-85 live days LUX +/-1σ expected sensitivity

XENON100(2012)-225 live days

CRESST Favored

CDMS II Ge

x

DAMA/LIBRA Favored
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What’s next: LUX 300 day run

✤ 300 day run planned for 2014/2015!

✤ Cosmogenic cool-down plus potential for further improvements (E-field, cals., …)!

✤ Still not background limited and expect factor of ∼5 improvement in sensitivity   
→ discovery possible!
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The ZEPLIN programme at Boulby Mine
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ZEPLIN I!
Single phase, 3 PMTs, 5/3.1 kg !

Run 2001-04!
Limit: 1.1*10-6 pb 

ZEPLIN II!
Double phase, 7 PMTs, !

moderate E field, 31/7.2 kg!
Run 2005-06 !

Limit: 6.6*10-7 pb 

The first 2-phase LXe Dark Matter 
detector!

ZEPLIN III!
Double phase, 31 PMTs, !

high E field, 10/6.4 kg!
Run 2009-11 !

Limit: 3.9*10-8 pb 

Europe’s most sensitive SI!
World’s best WIMP-neutron SD !Single-phase
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Longer term: LUX-ZEPLIN (LZ)

✤ 20 times LUX Xenon mass, active scintillator veto, Xe purity at sub ppt level!

✤ Ultimate direct detection experiment - approaches coherent neutrino scattering backgrounds

56

T. Shutt - LZ, Oct 30, 2013 9

LZ

Same water tank as LUX
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Neutrinos

Atmospheric and DSNB Neutrinos

CDMS II Ge  (2009)

Xenon100 (2012)

CRESST

CoGeNT
(2012)

CDMS Si
(2013)

EDELWEISS (2011)

DAMA SIMPLE (2012)

ZEPLIN-III (2012)COUPP (2012)

SuperCDMS Soudan Low Threshold
XENON 10 S2 (2013)

CDMS-II Ge Low Threshold (2011)

SuperCDMS Soudan

Xenon1T

LZ

LUX (2013)

DarkSide G2

DarkSide 50

DEAP3600

PICO250-CF3I

PICO
250-C3F8

7Be
Neutrinos

  NEUTRINO C OHER ENT SCATTERING 
 

 
 

 

  
 

NEUTRINO COHERENT SCATTERING

CDMSlite

(2013)

SuperCDMS SNOLABLUX 300-day

SuperCDMS  SNOLAB

(Green&ovals)&Asymmetric&DM&&
(Violet&oval)&Magne7c&DM&
(Blue&oval)&Extra&dimensions&&
(Red&circle)&SUSY&MSSM&
&&&&&MSSM:&Pure&Higgsino&&
&&&&&MSSM:&A&funnel&
&&&&&MSSM:&BinoEstop&coannihila7on&
&&&&&MSSM:&BinoEsquark&coannihila7on&
&

Onwards and downwards
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LZ Projections
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LZ and all ‘G2’ Projections
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Summary

✤ With 85.3 live-days LUX set world’s best limit on spin-
independent scattering:!
✤ 90% UL 7.6 × 10-46 cm2 @ 33 GeV/c2 → first sub-zeptobarn WIMP detector!

✤ Low-mass WIMPs fully excluded by LUX!

✤ Results paper accepted by PRL, expect more to follow!

✤ LUX at the frontier of dark matter direct detection - exciting 
times ahead with the 300 day run, WIMP discovery possible!!

✤ LUX-ZEPLIN proposed successor will approach irreducible 
background limit for direct detection experiments
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THANKS FOR LISTENING 


