## Searching for dark matter in the Black Hills of South Dakota: First results from the LUX experiment





**Dr. Chamkaur Ghag** University College London



### Contents

- Brief introduction to Dark Matter
- \* Direct detection of galactic WIMPs
- \* The LUX dark matter experiments at SURF
- First results from LUX

### **Early evidence for Dark Matter**

- \* Fritz Zwicky (1930s) and Vera Rubin (1970s) measure rotational velocities of galaxies and clusters
- \* Expect Keplerian fall-off, but observe flat rotation curves
  - $\rightarrow$  Galaxies are rotating too fast
  - $\rightarrow$  Implies presence of much more mass in systems



C. Ghag — University College London — 24 April 2014

### **Early evidence for Dark Matter**

- \* Fritz Zwicky (1930s) and Vera Rubin (1970s) measure rotational velocities of galaxies and clusters
- \* Expect Keplerian fall-off, but observe flat rotation curves
  - $\rightarrow$  Galaxies are rotating too fast
  - $\rightarrow$  Implies presence of much more mass in systems



C. Ghag — University College London — 24 April 2014









### **Gravitation lensing**







C. Ghag — University College London — 24 April 2014

### **Bullet Cluster** (1E 0657-56)



C. Ghag — University College London — 24 April 2014

### **Bullet Cluster** (1E 0657-56)



C. Ghag — University College London — 24 April 2014









### **Gravitation lensing**







C. Ghag — University College London — 24 April 2014



C. Ghag — University College London — 24 April 2014



C. Ghag — University College London — 24 April 2014

## **Dark Matter properties**

- \* Interacts only **weakly** with normal matter
- \* Expected to be **neutral** in most scenarios
- \* Cold: Non-relativistic freeze-out
- \* **WIMPs** favoured candidates for Cold Dark Matter (alternatives: axions, sterile neutrinos, ...)
- \* Requires beyond standard model physics:
  - \* Super-symmetry: LSP neutralino, 10<sup>-40</sup> to 10<sup>-50</sup> cm<sup>2</sup>, Mass range GeV→TeV
  - \* Universal Extra Dimensions: Stable KK, similar detection properties as neutralino

## **Detecting Dark Matter**



C. Ghag — University College London — 24 April 2014

## Direct detection of galactic dark matter

- Elastic scattering of galactic WIMPs off target nuclei in terrestrial detector
- WIMP speed ~ 220 km/s expect recoils O(10 keV)
- \* Spin-independent cross section  $\propto A^2$
- \* Expect ~ 1 event/kg/year
- Requires SM backgrounds ~0 (underground operation)





C. Ghag — University College London — 24 April 2014

### **Direct detection techniques**

 Requirements: large mass, low-radioactivity, low-energy threshold, high acceptance, discrimination



C. Ghag — University College London — 24 April 2014



C. Ghag — University College London — 24 April 2014

### WIMP search status < 30th October 2013



C. Ghag — University College London — 24 April 2014

### WIMP search status < 30th October 2013



C. Ghag — University College London — 24 April 2014

## The Large Underground Xenon (LUX) experiment

The worlds largest dual-phase xenon time-projection chamber

C. Ghag — University College London — 24 April 2014

### The LUX collaboration



**Richard Gaitskell** Simon Fiorucci Monica Pangilinan Jeremy Chapman **David Malling** James Verbus Samuel Chung Chan **Dongging Huang** 



**Case Western** 

| Thomas Shutt         | PI, Protessor    |
|----------------------|------------------|
| Dan Akerib           | PI, Professor    |
| Karen Gibson         | Postdoc          |
| Tomasz Biesiadzinski | Postdoc          |
| Wing H To            | Postdoc          |
| Adam Bradley         | Graduate Student |
| Patrick Phelps       | Graduate Student |
| Chang Lee            | Graduate Student |
| Kati Pech            | Graduate Student |
|                      |                  |

### Imperial College

| London          | Imperial College London |
|-----------------|-------------------------|
| Henrique Araujo | PI, Reader              |
| Tim Sumner      | Professor               |
| Alastair Currie | Postdoc                 |
| Adam Bailey     | Graduate Studer         |

### ······ Lawrence Berkeley + UC Berkeley

PI. Professor **Bob Jacobsen** Murdock Gilchriese Senior Scientist Kevin Lesko Senior Scientist **Carlos Hernandez** Postdoc Victor Gehman Scientist Mia Ihm Graduate Student

### Lawrence Livermore

Adam Bernstein Dennis Carr Kareem Kazkaz Peter Sorensen John Bower

### LIP Coimbra

**Isabel Lopes** Jose Pinto da Cunha Vladimir Solovov Luiz de Viveiros Alexander Lindote Francisco Neves **Claudio Silva** 

PI, Professor Research Associate Postdoc Graduate Student Graduate Student Graduate Student Graduate Student Graduate Student

PI. Leader of Adv.

Staff Physicist

Staff Physicist

PI, Professor

Postdoc

Postdoc

Postdoc

Postdoc

Assistant Professor

Senior Researcher

Engineer

Mechanical Technician

David Taylor Mark Hanhardt

> Texas A&M ΑIΝ

SDSTA

SD School of Mines

| James White †<br>Robert Webb |
|------------------------------|
| Rachel Mannino               |
| Clement Sofka                |
|                              |

Xinhua Bai

Doug Tiedt

**Tyler Liebsch** 

### UC Davis

Lea Reichhart

Sally Shaw

| FOR DAY          |                      |
|------------------|----------------------|
| Mani Tripathi    | PI, Professor        |
| Bob Svoboda      | Professor            |
| Richard Lander   | Professor            |
| Britt Holbrook   | Senior Engineer      |
| John Thomson     | Senior Machinist     |
| Ray Gerhard      | Electronics Engineer |
| Aaron Manalaysay | Postdoc              |
| Matthew Szydagis | Postdoc              |
| Richard Ott      | Postdoc              |
| Jeremy Mock      | Graduate Student     |
| James Morad      | Graduate Student     |
| Nick Walsh       | Graduate Student     |
| Michael Woods    | Graduate Student     |
| Sergey Uvarov    | Graduate Student     |
| Brian Lenardo    | Graduate Student     |

PI, Professor

Graduate Student

Graduate Student

Project Engineer

Support Scientist

PI, Professor PI. Professor Graduate Student

Graduate Student

### UC Santa Barbara

| Harry Nelson        | PI, Professor    |
|---------------------|------------------|
| Mike Witherell      | Professor        |
| Dean White          | Engineer         |
| Susanne Kyre        | Engineer         |
| Carmen Carmona      | Postdoc          |
| Curt Nehrkorn       | Graduate Student |
| Scott Haselschwardt | Graduate Student |
|                     |                  |

### University College London **≜UC** Chamkaur Ghag PI, Lecturer





### University of Edinburgh

Alex Murphy PI, Reader Paolo Beltrame Research Fellow James Dobson Postdoc

### University of Maryland

Carter Hall PI, Professor Attila Dobi Graduate Student Graduate Student **Richard Knoche** Jon Balajthy Graduate Student

### 8 University of Rochester 3

Frank Wolfs PI, Professor Woitek Skutski Senior Scientist Eryk Druszkiewicz Graduate Student Mongkol Moongweluwan Graduate Student

### University of South Dakota

| Dongming Mei   | PI, Professor    |
|----------------|------------------|
| Chao Zhang     | Postdoc          |
| Angela Chiller | Graduate Student |
| Chris Chiller  | Graduate Student |
| Dana Byram     | *Now at SDSTA    |





C. Ghag — University College London — 24 April 2014

## Sanford Underground Research Facility (SURF)





Former Homestake gold mine - refurbished for science only







C. Ghag — University College London — 24 April 2014

### LUX in the Davis Cavern



C. Ghag — University College London — 24 April 2014

### An ultra low background environment



C. Ghag — University College London — 24 April 2014

## The LUX cryostat



Hamamatsu R8778 PMTs (61 top, 61 bottom)

C. Ghag — University College London — 24 April 2014

## The active region of LUX



C. Ghag — University College London — 24 April 2014

### **Principle of detection: dual phase xenon TPC**



C. Ghag — University College London — 24 April 2014

### **Principle of detection: dual phase xenon TPC**



C. Ghag — University College London — 24 April 2014

## Principle of detection: dual phase xenon TPC

- Primary scintillation (S1) and secondary ionization signal from electroluminescence (S2)
- \* 3D position (mm resolution)
- S2/S1 particle discrimination
- Recoil energy correlated to S1 and S2

**Electron/Nuclear** 

recoil

178nm

Ionisation

Xe<sup>+</sup>

 $\mathbf{Xe}_{2}^{+}$ 

+Xe

**+e** 

 $Xe^{**} + Xe$ 

(recombination)

Powerful Xe self-shielding

Excitation

+Xe

Singlet

3ns

2Xe

Xe

Xe<sub>2</sub>\*

Triplet

2Xe

178nm



C. Ghag — University College London — 24 April 2014

### **LUX supp**orting systems

conduits

into water

tank

LUX Thermosyphon



### Kr removal facility



130 ppb to 3.5 ppt!



C. Ghag — University College London — 24 April 2014

cold

head

## Calibrating LUX



- External sources via source tubes:
  - Americium-beryllium (AmBe) and  $^{252}$ Cf: low energy neutrons  $\rightarrow$  validating NR models and detector sims, NR efficiencies
- Xenon self-shielding  $\rightarrow$  internal sources injected into circulation system:
  - \* <sup>83m</sup>Kr: half-life ~1.8 hours, 32.1 + 9.4 keV betas
    → weekly purity & xyz maps; drift length >130 cm
  - Tritiated methane (CH3T): low energy betas (end point 18 keV) High stats, uniform and high purity → ER band, ER acceptance



C. Ghag — University College London — 24 April 2014

WIMP-like

# First dark matter results from LUX

C. Ghag — University College London — 24 April 2014

### Run 3 data-taking



- \* LUX moves underground in July 2012
- Detector cool-down January 2013, Xe condensed mid-February 2013
- \* Kr and AmBe calibrations throughout, CH3T after WIMP search

### A LUX event - 1.5 keV electron recoil



C. Ghag — University College London — 24 April 2014

### **Position reconstruction**

- \* Drift time (1.5 mm/μs) for Z-position,
- \* XY position fitting S2 hit pattern with LRFs from internal calibrations



C. Ghag — University College London — 24 April 2014

## **Backgrounds in LUX**



*The most radioactively quiet place in the world!* 

C. Ghag — University College London — 24 April 2014

## ...and still dropping!



C. Ghag — University College London — 24 April 2014

### Light and charge yields



C. Ghag — University College London — 24 April 2014

### **Tritium Calibration**



C. Ghag — University College London — 24 April 2014

### <sup>241</sup>AmBe & <sup>252</sup>Cf calibration



C. Ghag — University College London — 24 April 2014

### Calibrations



C. Ghag — University College London — 24 April 2014

### Discrimination

\* For 50% NR acceptance at 181 V/cm average discrimination **99.6**%



C. Ghag — University College London — 24 April 2014

## S1 efficiency

 Independent measures using AmBe, tritium, LED calibrations and full MC simulation of NR events (includes analysis cuts)



C. Ghag — University College London — 24 April 2014

### NR acceptance

- S2–only
- S1–only
- ▽ S1, S2 combined, before threshold cuts
- + S1, S2 combined, after threshold cuts



C. Ghag — University College London — 24 April 2014

| Cut                                  | Events Remaining |
|--------------------------------------|------------------|
| all triggers                         | $83,\!673,\!413$ |
| detector stability                   | $82,\!918,\!902$ |
| single scatter                       | $6,\!585,\!686$  |
| S1 energy $(2 - 30 \text{ phe})$     | 26,824           |
| S2 energy $(200 - 3300 \text{ phe})$ | 20,989           |
| single electron background           | 19,796           |
| fiducial volume                      | 160              |

- \* Non-blind analysis!
- Hardware trigger: at least two trig. channels > 8 phe within 2 μs window (8 PMTs per trig. channel)
  - \* >99% efficient for raw S2 > 200 phe

| Cut                                  | Events Remaining |
|--------------------------------------|------------------|
| all triggers                         | $83,\!673,\!413$ |
| detector stability                   | $82,\!918,\!902$ |
| single scatter                       | $6,\!585,\!686$  |
| S1 energy $(2 - 30 \text{ phe})$     | 26,824           |
| S2 energy $(200 - 3300 \text{ phe})$ | 20,989           |
| single electron background           | 19,796           |
| fiducial volume                      | 160              |

- Remove periods of live-time when liquid level, gas pressure or grid voltages were out of nominal ranges:
  - \* Less than 1.0 % live-time loss!

| Cut                                  | Events Remaining |
|--------------------------------------|------------------|
| all triggers                         | 83,673,413       |
| detector stability                   | $82,\!918,\!902$ |
| single scatter                       | $6,\!585,\!686$  |
| S1 energy $(2 - 30 \text{ phe})$     | 26,824           |
| S2 energy $(200 - 3300 \text{ phe})$ | 20,989           |
| single electron background           | 19,796           |
| fiducial volume                      | 160              |

- \* Exactly 1 S2 and 1 S1 as identified by the pulse finding/classification:
  - \* Separate S1s from S2s using pulse shape and PMT hit distributions
  - \* S1s identification includes a two fold PMT coincidence requirement

| Cut                                  | Events Remaining |
|--------------------------------------|------------------|
| all triggers                         | 83,673,413       |
| detector stability                   | $82,\!918,\!902$ |
| single scatter                       | $6,\!585,\!686$  |
| S1 energy $(2 - 30 \text{ phe})$     | $26,\!824$       |
| S2 energy $(200 - 3300 \text{ phe})$ | 20,989           |
| single electron background           | 19,796           |
| fiducial volume                      | 160              |

- \* Accept events with S1 between 2-30 phe (0.9-5.3 keVee, ~3-18 keVnr):
  - \* 2 phe analysis threshold allows sensitivity down to low WIMP masses
  - \* Upper limit avoids <sup>127</sup>Xe 5 keVee activation

| Cut                              | Events Remaining |
|----------------------------------|------------------|
| all triggers                     | 83,673,413       |
| detector stability               | $82,\!918,\!902$ |
| single scatter                   | $6,\!585,\!686$  |
| S1 energy $(2 - 30 \text{ phe})$ | 26,824           |
| S2  energy  (200 - 3300  phe)    | $20,\!989$       |
| single electron background       | 19,796           |
| fiducial volume                  | 160              |

- \* S2 threshold cuts subdominant to S1:
  - \* 200 phe ~ 8 single electrons
  - \* Removes small S2 edge events and single electron events

| Cut                              | Events Remaining |
|----------------------------------|------------------|
| all triggers                     | $83,\!673,\!413$ |
| detector stability               | $82,\!918,\!902$ |
| single scatter                   | $6,\!585,\!686$  |
| S1 energy $(2 - 30 \text{ phe})$ | 26,824           |
| S2  energy  (200 - 3300  phe)    | $20,\!989$       |
| single electron background       | $19,\!796$       |
| fiducial volume                  | 160              |

- Require less than 100 phe (< 4 extracted electrons) of additional signal in 1 ms period around S1 and S2 signals:
  - \* Simple cut to removes additional single electron events in 0.1-1 ms following large S2 signals
  - \* Only 0.8% hit on live-time

| Cut                              | Events Remaining |
|----------------------------------|------------------|
| all triggers                     | $83,\!673,\!413$ |
| detector stability               | $82,\!918,\!902$ |
| single scatter                   | $6,\!585,\!686$  |
| S1 energy $(2 - 30 \text{ phe})$ | 26,824           |
| S2  energy  (200 - 3300  phe)    | 20,989           |
| single electron background       | 19,796           |
| fiducial volume                  | 160              |

- \* 118 kg fiducial volume defined by:
  - \* Z cut:  $38 < drift time < 305 \ \mu s$  (320  $\mu s$  is max drift time)
  - \* Reconstructed radial position < 18 cm

## LUX WIMP search data, 85.3 live-days, 118 kg FV

After all selection cuts:
 160 candidate events in fiducial (r < 18 cm and 7 cm < z < 47 cm)</li>



C. Ghag — University College London — 24 April 2014

### LUX WIMP search data, 85.3 live-days, 118 kg FV



C. Ghag — University College London — 24 April 2014

### LUX WIMP search data! 85.3 live-days, 118 kg FV



C. Ghag — University College London — 24 April 2014

### LUX WIMP search data! 85.3 live-days, 118 kg FV



C. Ghag — University College London — 24 April 2014

### Simulated response for hypothetical WIMP signals

For 1000 GeV WIMP @ 1.9 ×10<sup>-44</sup> cm<sup>2</sup>, XENON100 90% CL:

→ expect 9 WIMPs in LUX search



C. Ghag — University College London — 24 April 2014

## Simulated response for hypothetical WIMP signals



For 8.6 GeV WIMP @ 2.0 ×10<sup>-41</sup> cm<sup>2</sup>, CDMS II Si (2012) 90% CL ....

→ expect 1550 WIMPs in LUX search

C. Ghag — University College London — 24 April 2014

## **Profile likelihood ratio for limits**

\* Unbinned maximum likelihood compare data with prediction on event

4 observables:  $\mathbf{x} = S1$ , log10(S2/S1), r and z



Ratio of this to null hypothesis used to create test statistic and extract 90% CI upper limit

C. Ghag — University College London — 24 April 2014

### **Spin-independent sensitivity**



C. Ghag — University College London — 24 April 2014

### Low-mass WIMPs excluded



C. Ghag — University College London — 24 April 2014

### What's next: LUX 300 day run



- 300 day run planned for 2014/2015
- \* Cosmogenic cool-down plus potential for further improvements (E-field, cals., ...)
- Still not background limited and expect factor of ~5 improvement in sensitivity
  → discovery possible!

## The ZEPLIN programme at Boulby Mine



ZEPLIN I Single phase, 3 PMTs, 5/3.1 kg Run 2001-04 Limit: 1.1\*10<sup>-6</sup> pb



**ZEPLIN II** Double phase, 7 PMTs, moderate E field, 31/7.2 kg

Run 2005-06 Limit: 6.6\*10<sup>-7</sup> pb



**ZEPLIN III** Double phase, 31 PMTs, high E field, 10/6.4 kg Run 2009-11 *Limit: 3.9\*10<sup>-8</sup> pb* 

Single-phase

The first 2-phase LXe Dark Matter detector!

Europe's most sensitive SI World's best WIMP-neutron SD

C. Ghag — University College London — 24 April 2014

### Longer term: LUX-ZEPLIN (LZ)

- \* 20 times LUX Xenon mass, active scintillator veto, Xe purity at sub ppt level
- \* Ultimate direct detection experiment approaches coherent neutrino scattering backgrounds



C. Ghag — University College London — 24 April 2014

### **Onwards and downwards**



### C. Ghag — University College London — 24 April 2014

## **LZ** Projections



C. Ghag — University College London — 24 April 2014

### LZ and all 'G2' Projections



C. Ghag — University College London — 24 April 2014

- With 85.3 live-days LUX set world's best limit on spinindependent scattering:
  - \* 90% UL 7.6 × 10<sup>-46</sup> cm<sup>2</sup> @ 33 GeV/c<sup>2</sup>  $\rightarrow$  first sub-zeptobarn WIMP detector
  - \* Low-mass WIMPs fully excluded by LUX
  - \* Results paper accepted by PRL, expect more to follow
- \* LUX at the frontier of dark matter direct detection exciting times ahead with the 300 day run, WIMP discovery possible!
- LUX-ZEPLIN proposed successor will approach irreducible background limit for direct detection experiments

