The Dark Universe: Cosmology Andrew Jaffe Imperial College IOP HEPP/APP 2010

March 30 2010

The Dark Universe: Cosmology in 2010 and beyond

- A Standard Cosmological Model & its Parameters?
 - Inflation, Dark Energy
- Measurements at low and medium redshift: galaxies
 - oscillations in the baryons: characteristic scales and the growth of structure
- Measurements at high redshift: the CMB
 - Confirming the paradigm, measuring parameters
 - beyond: gravitational radiation
- Areas of discomfort?...

Do we have a standard cosmological model?

- Flat Universe
- Dark Matter
- Acceleration
- InflationDark Energy

Lots of unseen stuff...

... with strange properties

 Parameters
 depend in detail on data and model

	Flat ACDM	Curved ACDM
Ω_{tot}	1	1.005 ± 0.006
Ω_m	0.278±0.015	0.282±0.016
Ω_{Λ}	0.72 ± 0.015	0.72±0.016
H_0	69.9±1.3 km/s/Mpc	68.5±2.0 km/s/Mpc

Measuring cosmological parameters

- The Hubble Diagram M(z)
 Local: H₀
 - Distant: acceleration (q₀)
 - densities Ω_i
- Power spectra
 - Galaxies
 - CMB
 - Weak lensing
 - Velocities, cluster abundances, ...

Statistical Cosmology

- \Box Surveys as a cosmological tool \Rightarrow Power Spectra
- □ Initial conditions \Rightarrow Primordial spectrum
- \square Present day \Rightarrow processed power spectrum
- Linked via Transfer functions
 - for each kind of "power" measurement P_i
 - e.g., CMB C_{ℓ} , Galaxy spectrum P(k)

$$P_i = \int dk \ T_i^2(k) P_{\varphi}(k)$$

P_{φ:} primordial spectrum (of potential fluctuations)
 T_i(k) depends on the cosmological parameters

Power Spectrum of galaxies P(k)

- Old school: overall shape
- Growth of structure differs in early (radiation) and late (matter) epochs
 turnover at k_{eq} ~ H_{eq} ~ Ω_mH₀
 2dF Ω_m=0.27 ± 0.06
 SDSS Ω_m=0.30 ± 0.03

But now we can see detailed structure in P(k)

Observations

Big complication in practice: bias

we observe galaxy numbers, not mass

• Model:
$$\frac{\delta n}{n} = b \frac{\delta \rho}{\rho}$$

- should be good on large scales...
- Expect to see overall power-law behaviour with superposed oscillations -- sound waves.

Sloan Digital Sky Survey Tegmark et al '03

Inflation

- Early period of accelerated expansion, followed by reheating into radiation-dominated Universe of standard model particles
 - Predicts flat ✓, smooth ✓, hot big-bang ✓ Universe
 - usually realized by slowly-rolling scalar field, $V \approx \rho \approx -p$
 - " "chaotic inflation" & questions of the correct measure for initial conditions

 \checkmark

 \checkmark

- density perturbations via quantum fluctuations (cf. Hawking radiation)
 - Scale-invariant: $n_s \approx 1$
 - Gaussian (described by power spectrum)
 - Adiabatic (perturbation to all species)
- Also predicts background of gravitational radiation
 - Amplitude depends on epoch of inflation
 - possibly) observable in CMB polarization (not yet)

The Accelerating Universe: Dark Energy

1.0

100

- Universe appears to be accelerating again, today
 - (no compelling models yet linking the two periods...)
- Dark energy affects
 - Iuminosity and angular diameter distances
 - objects further away than "expected"
 - the growth of structure
 accelerated expansion
 - counters gravitational attraction
- In standard cosmologies, only since z~l
 - dark energy is only beginning to dominate today.

 $\Omega_m(a)$

 $\Omega_r(a)$

 $\Omega_{\Lambda}(a)$

Dark Energy Models

• Scalar Field Models $(T_{\mu\nu})$

- like inflation, but need to delay to T~10K~1 meV (but no reheating...)
- Modified Gravity (lhs of Einstein Equation, $G_{\mu\nu}$)

 e.g., change coupling in Einstein-Hilbert action — f(R) gravity

Require equation of state

- $w = p/\rho < -1/3$ (needed for acceleration)
- (although $w \approx -1$ typical)

Probing the power spectrum: Baryon Oscillations

- At photon decoupling, early sound waves are trapped in the (now ~pressureless) baryons
 - characteristic scale ~c_s t_{dec}~100 Mpc

Baryon Acoustic Oscillations

See peak in correlations at ~100 Mpc corresponding to sound-wave propagation

SDSS Galaxy Correlation function

BAOs from Redshift Surveys

Also visible as bumps and wiggles in the power

spectrum

BAOs from Redshift Surveys

Also visible as bumps and wiggles in the power

spectrum

Exploring Dark Energy

BAOs: characteristic comoving scale ~100 h⁻¹ Mpc

- Angular diameter distance d_A(z)
 compare CMB peak d_A(1,100)
 photometric redshift surveys
- Effect of dark energy on the growth of structure over time
 weak lensing (also sensitive to d_A)
 power spectra & transfer fn
 "Direct" measurements of the
 - Hubble diagram d(z)

supernovae

Reconstructing the density field

Distant Galaxies and acceleration

- Going beyond z=0.1 to measure the shape of the Hubble diagram
 - Determining Ω:
 - SNae are dimmer than would be if $\Omega_{\Lambda}=0$
 - ⇒accelerating expansion

Kowalski et al 2008

Future surveys

- DES, BOSS (SDSS-III), WIGGLEZ
- Various combinations of
 - SN search
 - redshift surveys
 - weak lensing observations
 - cluster abundances

Detect ~10% deviations from w = -1

- Culminates with EUCLID/JEDAM/... satellite
 goal: measure w(z)
- In very general models, w(z) is degenerate with primordial spectrum, galaxy evolution, etc...

The Cosmic Microwave Background

- 400,000 years after the Big Bang, the temperature of the Universe was T~10,000 K
- Hot enough to keep hydrogen atoms ionized until this time
 - □ proton + electron \rightarrow Hydrogen + photon $[p^+ + e^- \rightarrow H + \gamma]$
 - charged plasma \rightarrow neutral gas
- Photons (light) can't travel far in the presence of charged particles

Initial temperature (density) of the photons

Hotter

- Doppler shift due to movement of baryon-photon plasma
- Gravitational red/blue-shift as photons climb out of potential wells or fall off of underdensities

- Photon path from LSS to today
- All linked by initial conditions $\Rightarrow 10^{-5}$ fluctuations

Initial temperature (density) of the photons

 $\sim \sim \sim$

Hotter

- Doppler shift due to movement of baryon-photon plasma
- Gravitational red/blue-shift as photons climb out of potential wells or fall off of underdensities

- Photon path from LSS to today
- All linked by initial conditions $\Rightarrow 10^{-5}$ fluctuations

Initial temperature (density) of the photons

Cooler

Hotter

- Doppler shift due to movement of baryon-photon plasma
- Gravitational red/blue-shift as photons climb out of potential wells or fall off of underdensities

 $\sim\sim\sim$

- Photon path from LSS to today
- All linked by initial conditions $\Rightarrow 10^{-5}$ fluctuations

• All linked by initial conditions $\Rightarrow 10^{-5}$ fluctuations

Temperature and polarization from WMAP

The CMB from WMAP: Temperature and Polarization

CMB Measurements: State of the Art

The "unified" spectrum c. 2008

Contaldi & Jaffe

Planck: Launched on 14 May!

Planck: Launched on 14 May!

Planck as a telescope: dust in the Milky Way galaxy

Future (soon) spectra

Breaks "conceptual" degeneracies (do we have the overall model correct?); most parameters better determined by factor of ~few.

Future (soon) spectra

Breaks "conceptual" degeneracies (do we have the overall model correct?); most parameters better determined by factor of ~few.

Gravitational Radiation & CMB

- Last scattering: "direct" effect of tensor modes on the primordial plasma
 - dominated by lensing of E ⇒ B for $\ell \gtrsim 100$
 - cleaning?
- Reionization peak $\ell \leq 20$
 - need ~full-sky. Difficult for single suborbital experiments
- Limits depend on full set of parameters

Suborbital experiments target $\ell \sim 100$ peak: require order-of-magnitude increase in sensitivity over Planck

Beyond Planck: New Technologies

PolarBear - AT Lee (Berkeley)

- Antenna-coupled bolometers
- ~900 pixels @ 150 GHz, 3000 bolometers
- Full use of useful 150 GHz
 Field-of-view
- New challenges: 1000s of bolometers (central limit theorem to the rescue???)

Our strange Universe: geometry & equation of state

Open Questions

- Fundamental Theories for Inflation, Dark Energy
 - Would naively expect $\rho_{\Lambda} \sim M_{\text{Pl}}^4 \Rightarrow \text{predict } \Omega_{\Lambda} \sim 10^{122} \gg 0.7$

pre-Inflation: do we live in a low-entropy Universe?

- Why now? $\Omega_{\Lambda} \sim \Omega_{m} \sim \Omega_{tot} \sim I$
 - do we need anthropic arguments to solve these puzzles?

- CMB "anomalies": low-*l* anisotropy?
- Is the simplest ACDM model sufficient?
 - Or: hot dark matter? isocurvature fluctuations? complicated initial conditions? varying w? non-trivial topology?

Conclusions

ACDM fits present data extremely well

- Next-generation experiments may measure free parameters
 - Scale of inflationary potential
 - variation of equation of state

- ... and may close some open questions
 - but we will need to revitalize the inner-space/outerspace connection to answer them all