B_s lifetime measurement at LHCb

Gemma Fardell

University of Edinburgh

IOP meeting 30th March 2010

Overview

- Aim: measure B_s lifetimes using early LHCb data.
- Many decay channels available to do this:
 - ► Flavour specific: $B_s \rightarrow D_s \pi$, $B_s \rightarrow D_s \mu \nu$
 - Admixture of CP eigenstates: $B_s \rightarrow J/\psi \phi$
 - CP eigenstates: $B_s \rightarrow D_s D_s$
- This talk:
 - Introduce the LHCb experiment.
 - Motivate method for combining multiple channels in a lifetime fit.
 - Leading to higher precision measurement and reduced correlation.
 - Fits based on fully simulated Monte Carlo selected events.

The LHCb Experiment

Single arm spectrometer with advanced Vertex detector and excellent tracking and Particle Identification.

Gemma Fardell (Edinburgh)

B_s lifetimes at LHCb

Some theory about *B_s* lifetimes

• B_H , B_L mass eigenstates have two lifetimes: τ_H and τ_L .

$$\begin{array}{ll} \Gamma_H = 1/\tau_H & \bar{\Gamma}_s = (\Gamma_L + \Gamma_H)/2 \\ \Gamma_L = 1/\tau_L & \Delta\Gamma_s = \Gamma_L - \Gamma_H \end{array}$$

• New physics gives rise to new phases (ϕ_{NP}).

$$\Rightarrow \Delta \Gamma_s \sim \Delta \Gamma_s^{SM} \cos(\phi_{NP})$$

• Theory prediction [Lenz, Nierste]: $\Delta\Gamma_s^{SM} = (8.8 \pm 1.7) \times 10^{-2} ps^{-1}$

	Γ _s	$\Delta\Gamma_s$
current precision (HFAG)	1.2 × 10 ⁻² ps ⁻¹	$3.4 imes 10^{-2} ps^{-1}$

$$\mathbf{\bar{\Gamma}}_{s} = \frac{\Gamma_{L} + \Gamma_{H}}{2}, \, \Delta \Gamma_{s} = \Gamma_{L} - \Gamma_{H}$$

A standard approach is to fit a single exponential to this distribution:

$$\Gamma_{single} pprox ar{\Gamma}_s + O((\Delta \Gamma_s/ar{\Gamma}_s)^2)$$

- BUT...
 - Poor constraint on ΔΓ_s, particularly for small values of ΔΓ_s.
 - Fitting for $\Delta \Gamma_s$ and $\overline{\Gamma}_s$ leads to large correlation.

Why is the $\Delta \Gamma_s$ constraint bad in $B_s \rightarrow D_s \pi$?

• Log-likelihood is non-parabolic for small $\Delta\Gamma_s$.

• $\propto \exp(\overline{\Gamma}_s t) \cosh(\Delta \Gamma_s t/2).$

▶ ⇒ it's not possible to measure $\Delta\Gamma_s$ from $B_s \rightarrow D_s \pi$ with a small data set.

Lifetimes from $B_s \rightarrow J/\psi \phi$

- Angular analysis of decay products separates CP+, CP- components.
- If separation was complete then this channel would measure Γ_L and Γ_H independently.
- The separation is not 100% \Rightarrow large correlation ~ -0.8 .

Simultaneous fit to $B_s \rightarrow D_s \pi$ and $B_s \rightarrow J/\psi \phi$

- Precision on $\overline{\Gamma}_{S}$ has greatly improved due to additional information.
- Correlation between $\Delta \Gamma_s$ and $\overline{\Gamma}_S$ reduced to ~ -0.1 .

Fitting to Monte Carlo data

- Now lets do some fits to the fully simulated MC signal data.
 - **1.** $B_s \rightarrow J/\psi \phi$ alone
 - **2.** $B_s \rightarrow D_s \pi$ alone
 - 3. Simultaneous fit

$B_s \rightarrow J/\psi \phi$: Fit to 0.2*fb*⁻¹ fully simulated data

- Fit to ~ 6000 $B_s \rightarrow J/\psi \phi$ events after selection.
- Fit model contains:
 - Correct B_s mass distribution.
 - Time resolution.
 - Flat propertime acceptance.
 - Angular acceptance

Parameter	Fit result and error, <i>ps</i> ⁻¹	σ from input
Γ _s	0.707 ± 0.019	1.4
$\Delta\Gamma_s$	0.015 ± 0.051	-0.88

$B_s \rightarrow D_s \pi$: Fit to 0.2*fb*⁻¹ fully simulated data

- Fit to ~ 8500 $B_s \rightarrow D_s \pi$ events after selection.
- Fit model contains:
 - Correct *B_s* mass distribution.
 - Time resolution.
 - Ignores low proper times; fit 2 → 15ps

Parameter	Fit result and error, ps ⁻¹	σ from input
Γs	0.686 ± 0.009	0.097
$\Delta\Gamma_s$	0.06 ± 0	fixed

Gemma Fardell (Edinburgh)

B_s lifetimes at LHCb

Simultaneous Fit

- Simultaneous fit to $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow D_s \pi$
- Fit model contains:
 - Correct B_s mass distribution.
 - Time resolution.
 - Angular acceptance for $B_s \rightarrow J/\psi \phi$.
 - Ignores low proper times; fit 2 → 15ps

Parameter	Fit result and error, <i>ps</i> ⁻¹	σ from input
Γs	0.690 ± 0.0059	1.7
$\Delta\Gamma_s$	0.060 ± 0.022	-0.013

- Increased precison on both $\overline{\Gamma}_s$ and $\Delta\Gamma_s$.
- Correlation reduced to -0.04.

Summary

So what are the precisions we can get on $\overline{\Gamma}_s$ and $\Delta\Gamma_s$ from these fits?

	Γ _s	$\Delta\Gamma_s$	$\overline{\Gamma}_s - \Delta \Gamma_s$
Fit type	precision, <i>ps</i> ⁻¹	precision, <i>ps</i> ⁻¹	correlation
$B_{\rm S} \rightarrow J/\psi \phi$	1.9×10 ⁻²	5.1 × 10 ⁻²	-0.84
$B_s \rightarrow D_s \pi$	9×10^{-3}	-	-
$B_s \rightarrow J/\psi \phi + B_s \rightarrow D_s \pi$	$5.8 imes 10^{-3}$	2.2×10^{-2}	-0.04

	Γ _s	$\Delta\Gamma_s$
	precision, <i>ps</i> ⁻¹	precision, ps ⁻¹
current precision (HFAG)	1.2×10^{-2}	$3.4 imes 10^{-2}$

- Improved B_s lifetime measurement can be made at LHCb with early data $(0.2fb^{-1})$.
- Highest precision reached by combining information from multiple channels, reducing $\overline{\Gamma}_s \Delta \Gamma_s$ correlation.

Backup Slides

Propertime acceptance parametrisation

- $B_s \rightarrow J/\psi \phi$ is lifetime unbiased as it's triggered by the μs
- In B_s → D_sπ small times not reconstructed as the HLT cuts on IP significance as this channel is triggered on the D_s displaced vertices.

$$acc(\tau) = rac{\left(au imes b
ight)^c}{1 + \left(au imes b
ight)^c} (1 \! + \! a \! imes \! au)$$

