Study of the B+->J/Psi K decay at LHCb

Ross Young University of Edinburgh

Mar-30-10

R. Young

Introduction

- With the start-up of collisions at the LHC the priority is for early physics and calibration of our detector.
- Measuring the cross-sections for particles is vital in understanding the processes involved in pp interactions, and how we can use this understanding to simulate our data better.
- This talk covers the first steps involved in making a measurement of B⁺ production cross-sections (in regions of transverse momentum p_T and rapidity y) at LHCb. It includes:
 - Plan of action
 - Preliminary results

Cross-section studies at LHCb

 Λ_0 production cross section measured in 2009 data at E_{cm} =900GeV/c² (Vanya Belyaev) K_S production cross section measured in 2009 data at $E_{cm}=900 GeV/c^2$ (Manuel Shiller)

Analysis Outline

- This study uses the flavour-specific B+->J/ ΨK+, due to its high production rate and clean signal.
- Measure cross-section σ in bins of p_T and y, $-L_{INT}$. $\sigma_{B+} = BR(B^+ -> J/\Psi K^+)^{-1}$. $\epsilon^{-1}_{sel}(p_T, y)$. $\epsilon^{-1}_{trig}(p_T, y)^{-1}$. $N(p_T, y)$
- $\varepsilon_{sel}(p_{T,y})$, $\varepsilon_{trig}(p_{T,y})$ from Monte Carlo
- N(p_T,y) from data.

B+->J/Psi K+ selection

•We analysed 277k MC signal events (at $E_{cm} = 10$ TeV). •Loose cuts were applied to the dataset to discern true candidates from mis-reconstructed candidates.

• $\epsilon_{sel} = 33.8\%$

Particle Cut value u" loose muon track x²/nDOF < 10>250MeV/c рт loose muon ш track x²/nDOF < 10>250MeV/c рт μ⁺μ΄ >500MeV/c Pт <80MeV/c² $M(\mu^{+}\mu^{-}) - M(J/\Psi)$ **)/Ψ** vertex x²/nDOF 20

Particle	Cut	Value		
K+	рт	>250MeV/c		
J/ΨK ⁺	M(J/ΨK ⁺) - M(B ⁺)	<300MeV/c ²		
B ⁺	vertex χ ² /nDOF	<20		

Signal data was fitted with a single Gaussian; background with a Chebychev.

3/30/10

Yields in bins of p_T and y (1)

We split the data further into bins of transverse momentum p_T and rapidity y of the B⁺ candidate and refit (below – 3<y<3.5; 0<p_T<16GeV/c).

Yields in bins of p_T and y (2)

The table below gives the total number of selected events per region of y and pT...

	0->2	2->4	4->6	6->8	8->10	10->16	p _T GeV/c
2->2.5	1066±35	1837±48	2089±53	1846±49	1327±40	1819±46	
2.5->3	3856±70	6087±93	6550±94	4669±79	2918±60	3545±64]
3->3.5	4530±78	7172±101	6787±96	4627±78	2583±57	2999±59]
3.5->4	3085±64	4787±82	4186±76	2891±61	1681±46	1750±45]
4->4.5	1019±36	1354±44	1345±42	897±35	464±24	573±26]
Y							-
	1						I I I

... or histogrammed per unit p_T – one can see a clear peak in the regions 2<p_T<4 and 3<y<3.5

3/30/10

bb-production at LHCb

Cross-section as a function of beam energy

The MC data used for this analysis is based on beam collisions of E_{cm} = 10TeV. The corresponding bb crosssection is approximately 300µb.
There is an error on this, as bb cross sections at the LHC is not yet fully understood.
In 0.1fb⁻¹, we expect:

3e+10 bb events

• 1.2e+10 B+

3/30/10

8

Integrated luminosity and annual yield

- Let us make a quick calculation of the B⁺ cross section.
- For the process B_u ->J/Psi K:
 - Visible branching fraction $BR = 6x10^{-5}$
 - Generator-level efficiency $\varepsilon_{gen} = 0.1630$
 - Average selection efficiency $\varepsilon_{sel} = 0.330$
- The MC dataset (277k generated events) corresponds an integrated luminosity of $L_{int} = 0.12$ fb⁻¹.
- Taking bin 3<y<3.5 and 0<pT<2 (=4530 events), we can extrapolate to a rough estimate of the cross section $\sigma_{b+} = 12\mu b$.
- This is what we expect in the first few months of data-taking.

LHCb THCp

B⁺/B⁻ production ratios

- The ratio of selected B⁺ to B⁻ candidates was also investigated on the MC signal data.
- An asymmetry here may indicate differences in the production rates at the generator level, or in the reconstruction efficiencies.
- No significant deviation from an equal ratio is observed.

	0->2	2->4	4->6	6->8	8->10	10->16	p _T (GeV/c)
2->2.5	1.06±0.03	1.04±0.01	1.02±0.07	1.03±0.04	1.01±0.06	1±0.01	
2.5->3	1.03±0.04	1.03±0.03	1.07±0.05	1.06±0.04	1.02±0.01	1.02±0.02	
3->3.5	1.01±0.02	1.03±0.04	1.04±0.04	1.02±0.05	0.98±0.04	0.99±0.01	
3.5->4	1.03±0.03	1.04±0.05	1.03±0.03	1.02±0.03	1±0.02	0.93±0.02	
4->4.5	0.86±0.04	1.05±0.06	0.84±0.05	1.02±0.06	0.87±0.05	1.05±0.04]
Y							

Future Work

- This is a work in progress.
- A background study is being run on various samples to attain a full selection of the channel
- At first glance, prompt modes and ghost tracks look to be the main contributions tighter cuts on the track χ^2 and a cut on the Kaon ID may need to be imposed.

Summary

- A Monte Carlo study on the B⁺ production crosssection has been carried out using a selection of the decay B_u ->J/ Ψ K.
- The cross-section peaks in the 3<Y<3.5 and 2<pt<6 GeV/c.
- We expect a B⁺ cross section of a few µb in the first few months of data-taking.
- There is no significant asymmetry in the ratio of produced B⁺'s to produced B⁻'s.