

Inclusive Branching Fraction Measurement of B⁺->K⁺π⁰π⁰ at BaBar

Eugenia Puccio University of Warwick

Motivations

- Possible hints of New Physics in measurements of rates and asymmetries in B->Kπ^{1,2}.
- Interesting to study related decays to final states K*π.³

Mode	BF x 10 ⁻⁶	A _{CP}
K ^{*+} π⁻	10.3 ± 1.1	-0.23±0.08
$K^{*+}\pi^0$	6.9 ± 2.3	0.04±0.29±0.05
$K^{*0}\pi^+$	9.9 + 0.8 - 0.9	-0.020+0.067-0.061
$K^{*0}\pi^0$	2.4 ± 0.7	-0.15±0.12±0.02

- Improved
 - measurements of K^{*+}π⁰ needed to reduce hadronic uncertainties.
- Only 3-body Kππ Dalitz plot not measured.

 ¹ B.Aubert *et al.* (BABAR), Phys. Rev. **D76**, 091102 (2007), 0707.2798
 ² Nature **452**, 332 (2008), ³ M.Gronau, D.Pirjol, and J.Zupan (2010), 1001.0702 Eugenia Puccio

Motivations (continued)

- Structure of f_X(1300) seen in m_{π+π-} mass spectrum in DP analyses of K⁺π⁺π⁻⁴ and K_sπ⁺π⁻⁵.
- Check for presence of $f_x(1300)$ in $\pi^0\pi^0$ invariant mass this will show if it is an even-spin state.

⁴ B.Aubert *et al.* (BABAR), Phys. Rev. **D78**, 012004 (2008), 0803.4451
 ⁵ B.Aubert *et al.* (BABAR), Phys. Rev. **D80**, 112001 (2009), 0905.3615

Eugenia Puccio

IOP 2010

The BaBar detector

- This analysis makes use of 429 fb⁻¹ of data taken at the Y(4S) resonance and 44.8 fb⁻¹ of data taken at energies below the Y(4S).
- In addition use non resonant MC and MC for $K^{*+}\pi^0$ and f_xK^+

General analysis techniques

m_{ES} for MC and offpeak

$m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$

ΔE for MC and offpeak

$$\Delta E = E_B^* - E_{beam}^*$$

Use kinematic variables m_{ES} and ΔE to discriminate signal events from continuum and B-backgrounds.
Also use event-shape variables combined in an MVA (ie. Fisher discriminant or <u>neural network</u>)

Insert these variables in a ML fit

Event shape variables and NN

- Ratio 2nd order momentumweighted monomial moment to 0th order, L₂/L₀
- Absolute value of cosine of angle between B direction and beam axis.
- Absolute value of cosine of angle between B thrust and beam axis.
- Absolute value of output of flavour tagger.

Use a "Multilayer Perceptron" NN tested and trained on signal MC and offpeak data.

Event selections

• Neutrals selections: $-\pi^0$ decay photons with $0.01 < LAT_{v} < 0.6$ $-\pi^0$ energy $E_v > 0.05$ GeV $-\pi^0$ helicity angle: $\cos g_{helicity}^{\gamma} < 0.9$ $-\pi^0$ mass :

 $0.115 < m_{\pi^0} < 0.150 \ GeV/c^2$

• K_s veto:

 $0.4 < m_{\pi^0 \pi^0} < 0.55 \ GeV/c^2$

 Average number of B candidates found per event is 1.3.

• Select the candidate with smallest χ^2 formed from the sum of the χ^2 values of the two π^0 masses.

Misreconstructed Events

- Misreconstructed events are classified by setting a boundary to the following relation:
 - $\begin{array}{ccc} & & p_{gen} p_{rec} \\ & \sigma_{p_{rec}} \\ & & p_{gen} p_{rec} \\ & \sigma_{p_{rec}} \\ & \sigma_{p_{rec}} \\ \end{array} \end{array} > 5 & \text{Misreconstructed or "self cross feed"} \\ & \text{event (SCF)} \end{array}$

m_{ES} for NR MC

ΔE for NR MC

Challenges of this mode

- The main challenge of this analysis is the presence of the two π⁰ mesons in the final state:
 - Expected large fraction of misreconstructed events.
 - This fraction is found to be dependent on Dalitz plot position.
 - Affects the ΔE distribution: broader shape also dependent on Dalitz plot.
- Encountered "Punzi Effect" ¹ in our model which occurs when a PDF in the ML fit is dependent upon a variable, which itself does not have a PDF in the fit.
- ¹ G. Punzi (2004), physics/0401045

Dependences acrossDPΔE - meanΔE - rmsSCF fraction

- All show strong correlations with DP, but for this measurement DP is not used in fit – Punzi biases...
- Solution:
 - Use only m_{ES} and NN PDFs. Use very tight cut on ΔE and fix $B\overline{B}$ background yields.
 - Reproduce DP from sPlot¹ and calculate SCF fraction until this converges to a definite value.

¹ Nucl. Instrum. Meth., A555 (2005), p. 356 - 369

Estimating the SCF fraction in data

- We start with a fixed value for the SCF fraction half way between lowest and highest SCF in signal MC samples.
- Because of fixed <u>BB</u> backgrounds, need to use "extended" sPlots.
- The SCF fraction is then measured as: $F_{SCF} = \frac{\int (DP_{sWeights} \times DP_{SCF})}{\int DP_{sWeights}}$
- This process is iterated using the calculated SCF fraction until resultant SCF fraction and signal yield converge.

m_{ES}: Cruijff

m_{FS}: 3rd order Chebychev polynomial

NN: histogram

NN: histogram

Continuum

m_{FS}: ARGUS

for $B\overline{B}$ backgrounds.

NN: 20 bins step function

Eugenia Puccio

IOP 2010

Preliminary Results

Projection plots: black points is data, blue line total fit result, red curve is continuum, green total background and black curve is the total signal contribution.

 Fit returned a total signal yield of 1220 ± 85 events and a SCF fraction of 9.7%.

Systematic Source	Preliminary estimate of uncertainty
Signal PDFs	4.6%
SCF fraction	2.5%
B background yields	1.4%
Fit bias	1.8%
Tracking efficiency	0.4%
Particle identification	1.0%
Neutral pion efficiency	6.0%
ΔE cut efficiency	4.0%
NN cut efficiency	3.0%
K _s veto	2.0%

Procedure to determine BF

- Signal reconstruction efficiency varies over the DP.
- Signal distribution over the DP is *a priori* unknown.
- Need to use *sWeights* and knowledge of variation of efficiency over the DP to correctly determine the BF.

Variation of signal efficiency over the DP determined from NR MC

Conclusion

- This is the first measurement of the branching fraction of the mode B⁺->K⁺π⁰π⁰.
- This analysis will be extended to look at some of the resonances in the Dalitz plot.
- Final results are anticipated in the summer.