Four Body Amplitude Analysis of $D \rightarrow K^+K^-\pi^+\pi^$ at CLEO Lauren Martin, University of Oxford

IOP 30 March 2010

$D \rightarrow K^+ K^- \pi^+ \pi^-$ Decays at CLEO

Motivation:

- Possible Decay to look for Direct CP violation in Singly Cabibbo suppressed decays
- Will be used for γ measurement in $B^{\pm} \rightarrow D_0 K^{\pm}$ decays

Previous Studies:

• Only recent amplitude analysis of this decay was by FOCUS in 2005, with ~1000 events PLB 610 (2005) 225

Dalitz Analysis Methods

- For D decays to 3 or 4 particles the decay can proceed via a number of intermediate resonances
- Each point in the Dalitz plane effectively corresponds to a unique final state with it's own strong phase
 - From such final states it is possible to extract γ from a single decay mode

- In order to extract γ a detailed Knowledge of the D⁰ decay structure is required
- This has already been carried out at B-factories for $K_s \pi \pi$
- This has not yet been carried out for four body decays e.g. $D_0 \to K^+ K^- \pi^+ \pi^-$
- One of the best environments to investigate decay parameters is in datasets available at CLEO-c
- A LHCb specific sensitivity study has been carried out : [Phys. Lett. B 647 (2007) 400]
 - Found the possible sensitivity to $\sigma(\gamma) = 18^{\circ}$ with 2fb-1
- $D \to K^+ K^- \pi^+ \pi^-$ decays advantageous for LHCb contains final state with only charged particles

Introduction to CLEO

- CLEO was a symmetrical e⁺e⁻experiment which was located at the Cornell Electron Storage Ring
- Collected data between 1979 and 2008
- Operated at energies at and above the charm threshold
- CLEO 2.5, CLEO III $e^+e^- \rightarrow \gamma(4S)$
- **CLEO-c** $E_{CM} = 4170 MeV, 3770 MeV$

 $e^+e^- \to \psi(3770) \to D_0\overline{D}_0$

- By reconstructing one D meson in one flavor => other D is of opposite flavor
- Additional advantage of threshold running provides clean environment with no fragmentation particles

CLEO $D \rightarrow K^+ K^- \pi^+ \pi^-$ **Data**

- $e^+e^- \to \gamma(4S)$ $D^{*+} \to D_0\pi^+$ $\overline{D}^{*-} \to \overline{D}_0\pi^-$
 - CLEO 2.5: 279 events
 - CLEO III: 1225 events
 - CLEO-c:
 - Ecm = 4170 MeV:
 - $\psi(4170) \rightarrow D_0^* \overline{D_0^*} \qquad \psi(4170) \rightarrow D^{*+} D^{*-}$
 - 744 events
 - Ecm = 3770 MeV: $\psi(3770) \rightarrow D_0 \overline{D_0}$
 - 1410 flavor tagged events

4 Body Decay Model

- A 4 Body final state requires 5 parameters to fully describe the decay kinematics
 - Can choose these from invariant masses of combinations of final state particles e.g. $S_{K^-\pi^+\pi^-}S_{K^+K^-}S_{K^-\pi^+}S_{\pi^+\pi^-}S_{K^+\pi^+\pi^-}$
- Unlike 3 body decays the 4 body phase space is not flat in these dimensions
- In order to model the decay consider the isobar formalism the decay can proceed through a variety of 2 or 3 body intermediate states, or entirely non resonantly.
- e.g. $D_0 \to K^*(\to K\pi)K\pi$ $D_0 \to \phi(\to KK)\rho(\pi\pi)$ $D_0 \to K_1(1270)^*(\to K^*(892)(\to K\pi)\pi)K$
- The amplitude for a single resonance is given by: A = S(l)BW
- For two resonances by: $A = S(l)BW_aBW_b$
 - S(I) gives the spin factor which depends on the spins of the resonances and the orbital angular momentum of the decay
 - BW gives the lineshape of the resonance
- The full amplitude is then given by a coherent sum of individual resonances

$D \to K^+ K^- \pi^+ \pi^-$ Decay Model

- Many possible resonances can be included
- Resonances highlighted in red are those used by FOCUS
- For most resonances BW lineshape is used
- for f(0)(980) a "flatte"
 lineshape is used
- For D->VV and D->VPP decays higher orbital angular momentum decays were considered
- (P and D waves in addition to S waves)

 $\phi(1020)\rho(770)$ $\phi(1020)\rho(770)$ P wave $\phi(1020)\rho(770)$ D wave $\phi(1020), \pi^+, \pi^ \rho(770)K^+, K^-$ (FocusFlatte) $f(0)(980), \pi^+, \pi^-$ Flatte $f(0)(980), K^+, K^$ $f(0)(980), K^+, K^ K^+,K^-,\pi^+,\pi^ \rho(770)K^+, K^-$ D wave $\rho(770)K^+, K^- P$ wave $\phi(1020), \pi^+, \pi^-$ D wave $\phi(1020), \pi^+, \pi^- P$ wave $K^{+}, K^{-}, \pi^{+}, \pi^{-}$ D wave $K^{+}, K^{-}, \pi^{+}, \pi^{-}$ P wave $\rho(770)K^+, K^- P$ wave $K^{+}, \pi^{-}, K^{+}, \pi^{+}$ D wave K^+,π^-,K^+,π^+ P wave $\overline{K^*}(892), K^+, \pi^-$ D wave $\overline{K^*}(892), K^+, \pi^- P$ wave $K^{*}(892), K^{-}, \pi^{+}$ P wave $K^{*}(892), K^{-}, \pi^{+}$ D wave

 $K_1(1270)^+ (\rightarrow K_0^*(1430), \pi^+), K^ \overline{K_1}(1270)^- (\rightarrow \overline{K_0}^*(1430), \pi^-), K^+$ $K_1(1270)^+ (\rightarrow K^*(892), \pi^+), K^ \overline{K_1}(1270)^- (\to \overline{K_0}^*(892), \pi^-), K^+$ $K_1(1270)^+ (\rightarrow \omega(782), K^+), K^ \overline{K_1}(1270)^- (\to \omega(782), K^-), K^+$ $K_1(1270)^+ (\rightarrow \rho(770), K^+), K^ \overline{K_1}(1270)^- (\to \rho(770), K^-), K^+$ $K_1(1400)^+ (\rightarrow K_0^*(892), \pi^+), K^ \overline{K_1}(1400)^-(\to \overline{K_0^*}(892), \pi^-), K^+$ $K^+(1680)(\to \rho(770), K^+), K^ \overline{K^{-}}(1680)(\to \rho(770), K^{-}), K^{+}$ $K^+(1680)(\rightarrow K^*(892), \pi^+), K^ \overline{K^{-}}(1680)(\to \overline{K^{*}}(892), \pi^{-}), K^{+}$ $K_2^+(1430)(\to \rho(770), K^+), K^ K_2^-(1430)(\to \rho(770), K^-), K^+$ $K_2^+(1430)(\to K^*(892), \pi^+), K^ K_2^-(1430)(\to \overline{K^*}(892), \pi^-), K^+$ $K^+(1410)(\rightarrow K^*(892), \pi^+), K^ \overline{K^{-}}(1410)(\rightarrow \overline{K^{*}}(892), \pi^{-}), K^{+}$ $K^{*}(892), K^{-}, \pi^{+}$ $\overline{K^{*}}(892), K^{+}, \pi^{-}$ $K^{*}(892)\overline{K^{*}}(892)$ $K^{*}(892)\overline{K^{*}}(892)$ P wave $K^{*}(892)\overline{K^{*}}(892)$ D wave

Fitting to Data

- For all flavor tagged data sets both D_0 and \overline{D}_0 decays are combined
- The background level was:
 CLEO-2.5 : ~30%, CLEO-3: ~10%, 4170: ~30%, 3770: ~14%
- For each data set the background is fit with an incoherent model to data from side bands
 - For CLEO-c datasets there is also a KsKK background which is fit separately to a simple model
- The efficiency effects for each dataset are included implicitly in the fit:
 - Events which have been passed through the detector simulation and had selection cuts applied to them are used in order to integrate the PDFs which are fitted
- New resonances were introduced one by one, and removed if they didn't contribute significantly (fit fraction < 5%)
- χ^2 per degree of freedom (calculated in binned multidimensional phase space) was used as a figure of merit in order to determine the best configuration
- Parameters fit with MINT framework developed by collaborators in Bristol

Preliminary Fit

• Invariant mass projections for the best configuration for a combined fit to all datasets

Unofficial

(Kππ**)**

sij(2,3,4)

 $(\pi\pi)$

Unofficial Fit Fractions & x^2

$K_1(1270)^+ (\to K^*(892), \pi^+), K^-$	$0.084{\pm}0.011$
$K_1(1270)^+ (\to \rho(770), K^+), K^-$	$0.043 {\pm} 0.008$
$\overline{K_1}(1270)^-(\to \rho(770), K^-), K^+$	$0.056{\pm}0.009$
$K^+(1410)(\to K^*(892), \pi^+), K^-$	$0.058{\pm}0.008$
$\overline{K^{-}}(1410)(\to \overline{K^{*}}(892), \pi^{-}), K^{+}$	$0.057{\pm}0.008$
$K^*(892)\overline{K^*}(892)$	$0.056 {\pm} 0.009$
$\phi(1020)\rho(770)$	$0.394{\pm}0.024$
$\phi(1020)\rho(770)$ D wave	$0.039 {\pm} 0.009$
$\phi(1020), \pi^+, \pi^-$	$0.097{\pm}0.011$
$\pi K, \pi K$ VS S wave	$0.09 {\pm} 0.012$
Sum	$0.974{\pm}0.028$
$\chi^2 \ { m per} \ { m DOF}$	1.55

Focus Model

PLB 610 (2005) 225

Mode	Magnitude	Phase	Fraction $(\%)$
$K_1(1270)^+K^-,\ K_1\to\rho(770)^0K^+$	1 (fixed)	0 (fixed)	$18\pm 6\pm 3$
$K_1(1270)^+K^-,\ K_1\to K_0^*(1430)\pi^+$	$0.27 \pm 0.08 \pm 0.06$	$354\pm19\pm19$	$2\pm1\pm0$
$K_1(1270)^+K^-,\ K_1\to K^*(892)^0\pi^+$	$0.94 \pm 0.16 \pm 0.13$	$12\pm12\pm15$	$16\pm4\pm5$
$K_1(1270)^+K^-$, (all modes)	—	—	$33\pm 6\pm 4$
$K_1(1400)^+K^-$	$1.18 \pm 0.19 \pm 0.09$	$259\pm11\pm13$	$22\pm3\pm4$
$K^*(892)0\bar{K}^*(892)^0$	$0.39\pm0.09\pm0.11$	$28\pm13\pm10$	$3\pm2\pm1$
$\phi(1020)\rho(770)^0$	$1.30\pm0.11\pm0.07$	$49\pm11\pm12$	$29 \pm 2 \pm 1$
$\rho(770)^0 K^+ K^-$	$0.33 \pm 0.12 \pm 0.16$	$278\pm26\pm20$	$2\pm2\pm2$
$\phi(1020)\pi^+\pi^-$	$0.30\pm0.06\pm0.06$	$163\pm16\pm15$	$1\pm1\pm0$
$K^{*}(892)^{0}K^{+}\pi^{-}$	$0.83 \pm 0.09 \pm 0.10$	$234\pm10\pm11$	$11\pm2\pm1$
$f_0(980)\pi^+\pi^-$	$0.91 \pm 0.13 \pm 0.05$	$240\pm11\pm17$	$15\pm3\pm2$

- 10 resonances => 20 Fit parameters (9 complex amplitudes + KsKK fraction for 3770 and 4170 datasets) for the 3737 total events
- Qualitatively similar to the model produced by the FOCUS analysis
 - Included higher orbital angular momentum states
 - The K1(1400) resonance included by FOCUS did not improve the fit to the CLEO data
 - FOCUS made no attempt to distinguish between D->X, D->Xbar so it is difficult to make quantitative comparisons between results

Next Steps

CP Tagged Data

CP eigenstate (**C**=-1) $e^+e^- \rightarrow \psi(3770) \rightarrow D_0\overline{D_0}$

- By reconstructing one D meson in a CP eigenstate => opposite side
 D is in opposite CP state
 - 79 CP-tagged events (49 even 30 odd) available at 3770 CM energy

Test Direct CPViolation

• By comparing a separate amplitude analysis to the D_0 and \overline{D}_0 it is possible to look for direct CP violation in this decay

Conclusions

- $D \to K^+ K^- \pi^+ \pi^-$ decays provide potential for γ measurement
- CLEO provides ideal environment for studying these parameters
- Encouraging preliminary results from fits to CLEO data
- Further data to be analyzed