Radiative B decays at LHCb

Fatima Soomro, Imperial College London

IOP 2010, 29-31 March 2010, University College London

Imperial College London

Imperial College London

Contents

- ✓ The LHCb detector (introduced by previous speakers)
- Introduction to radiative B decays
- Photon polarization in radiative B decays
- Photon polarization measurement at LHCb
 > systematics
- Conclusion and outlook

Imperial College Radiative decays of B mesons

- Radiative B decays are $b \rightarrow s(d) \gamma$ transitions
- In the SM, allowed through a penguin loop
- Are sensitive to NP contribution
- Useful in constraining NP
 - □ Test mass scale of NP particles
 - □ Test the couplings of NP particles
 - □ Test if the couplings have a V-A structure

New Physics contribution

Branching ratio measurements

Imperial College

London

- $B_{inclusive, exp}(B \rightarrow X_s \gamma) = 3.56 \pm 0.26 \times 10^{-4} [1] [3]$
- $B_{inclusive, th}$ (B $\rightarrow X_s \gamma$) = 3.15 ± 0.23 x 10⁻⁴ [2]

Good agreement puts limits on NP models

Exclusion areas in parameter space of a CMSSM model. Green: constraints from $b \rightarrow s\gamma$, brown: constraints from LSP, light blue: area favoured by WMAP [13]

In this talk, I will concentrate on measurements with B \rightarrow X_s γ , where X_s is a CP eigenstate (f^{cp}), in particular, B_s $\rightarrow \phi \gamma$.

Imperial College Photon polarization in $B \rightarrow f^{cp} \gamma$

Test the structure of NP operators if they contribute by measuring the photon polarization

In the SM, quarks that couple to the W are left handed

 \Rightarrow the photons are predominantly L handed in $\overline{B^0}$ decays

Imperial College Photon polarization in $B \rightarrow f^{cp} \gamma$

Test the structure of NP operators if they contribute by measuring the photon polarization

In the SM, quarks that couple to the W are left handed

 \Rightarrow the photons are predominantly L handed in B⁰ decays

In the SM the ratio of "wrong" helicity photons is $\infty m_s/m_b$ and predicted to be ~0.4% \Rightarrow in some NP scenarios can be up to 10% [4] \Rightarrow for example: LR symmetric model and the unconstrained MSSM model, predict that it can be very large, without affecting the BR (gluon emission can give upto a 1% effect as well [14])

Imperial College Theoretical introduction: $B \rightarrow f^{cp} \gamma$

In a B
$$\rightarrow f^{cp} \gamma$$
 decay, the time dependent decay width is parametrized as
 $\Gamma_{B_s \rightarrow f^{CP} \gamma}(t) = |A|^2 e^{-\Gamma_s t} \left(\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_s t}{2} + \mathcal{C} \cos \Delta m_s t - \mathcal{S} \sin \Delta m_s t \right)$
 $\Gamma_{\bar{B}_s \rightarrow f^{CP} \gamma}(t) = |A|^2 e^{-\Gamma_s t} \left(\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_s t}{2} - \mathcal{C} \cos \Delta m_s t + \mathcal{S} \sin \Delta m_s t \right)$

Where in the SM,

$$\mathcal{C} \approx 0, \quad \mathcal{S} \approx \sin 2\psi \sin \varphi_{(s)} \approx 0 \ (as \ \varphi_{(s)} \ is \ small),$$

and $\mathcal{A}^{\Delta} \approx \sin 2\psi \cos \varphi_{(s)}$

The parameter ψ contains information about the photon polarization:

$$\tan \psi \equiv \frac{\mathcal{A} \left(\bar{\mathrm{B}}_{\mathrm{s}} \to f^{\mathcal{CP}} \gamma_{\mathrm{R}} \right)}{\mathcal{A} \left(\bar{\mathrm{B}}_{\mathrm{s}} \to f^{\mathcal{CP}} \gamma_{\mathrm{L}} \right)}$$

Measurement of Photon polarization

Adding the two equations for the \overline{B}_s and B_s

Imperial College

$$\begin{split} \Gamma_{B_s \to f} c_{\mathcal{P}_{\gamma}} \left(t \right) &= |A|^2 e^{-\Gamma_s t} \left(\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_s t}{2} + \mathcal{C} \cos \Delta m_s t - \mathcal{S} \sin \Delta m_s t \right) \\ \Gamma_{\bar{B}_s \to f} c_{\mathcal{P}_{\gamma}} \left(t \right) &= |A|^2 e^{-\Gamma_s t} \left(\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_s t}{2} - \mathcal{Q} \cos \Delta m_s t + \mathcal{S} \sin \Delta m_s t \right) \\ \text{one gets } \Gamma_{B_s \to f} c_{\mathcal{P}_{\gamma}} \left(t \right) &= |A|^2 e^{-\Gamma_s t} \left(\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_s t}{2} \right) \end{split}$$

Measurement of Photon polarization

Adding the two equations for the \overline{B}_s and B_s

Imperial College

$$\begin{split} \Gamma_{\mathrm{B}_{\mathrm{s}}\to f} c_{\mathcal{P}_{\gamma}}(t) &= |\mathrm{A}|^{2} \operatorname{e}^{-\Gamma_{\mathrm{s}} t} \left(\cosh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} + \mathcal{C} \cos \Delta m_{\mathrm{s}} t - \mathcal{S} \sin \Delta m_{\mathrm{s}} t \right) \\ \Gamma_{\bar{\mathrm{B}}_{\mathrm{s}}\to f} c_{\mathcal{P}_{\gamma}}(t) &= |\mathrm{A}|^{2} \operatorname{e}^{-\Gamma_{\mathrm{s}} t} \left(\cosh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} - \mathcal{Q} \cos \Delta m_{\mathrm{s}} t + \mathcal{S} \sin \Delta m_{\mathrm{s}} t \right) \\ \text{one gets } \Gamma_{\mathrm{B}_{\mathrm{s}}\to f} c_{\mathcal{P}_{\gamma}}(t) &= |\mathrm{A}|^{2} \operatorname{e}^{-\Gamma_{\mathrm{s}} t} \left(\cosh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_{\mathrm{s}} t}{2} \right) \end{split}$$

Imperial College Perform fit for A^{Δ} (toy example) London 10³ $A^{\Delta} = 0.0$ $A^{\Delta} = 0.2$ 10² Divide $A^{\Delta} = 0.0$ by $A^{\Delta} = 0.2$ distribution 10 Could see ~4% deviation 0 5 7 8 1.04 1 2 3 6 $\tau B_{s}(ps)$ in longer lifetimes 1.03

3/30/2010

1.02

1.01

0.99

n

1

2

3

5

6

τB_s (ps)

8

7

• Can be done with untagged B_s sample,

 $\sigma_{A^{\Delta}} = 0.22$ (nominal LHCb year, 11 k signal events expected)

- For a tagged analysis, $\sigma_s = 0.1$ (nominal LHCb year) (remember $S \approx \sin 2\psi \sin \varphi_s$) > measurements at Belle and BaBar with $B_d \rightarrow K^*(K_s \pi^0)\gamma S = -0.19 \pm 0.23[12]$
 - Belle and Babar analyses based on a few hundred signal events
- Experimental requirements (it is a tough measurement):
 - Proper time resolution/bias to be precisely known
 - The lifetime acceptance function to be precisely known
 - Background distribution in lifetime to be known

roper time resolution is a measure of how well the B_a lifetime is

The proper time resolution

 Proper time resolution is a measure of how well the B_s lifetime is reconstructed

 A bias of 5 fs gives an uncertainty on A[△] which is 1/3 of the statistical uncertainty for 2fb⁻¹(nominal LHCb year)

Imperial College

Imperial College Sources of proper time bias

The B_s proper time is given by

 $\tau = \frac{\overrightarrow{P} \cdot \overrightarrow{d} m}{|P|^2}$

Where \overrightarrow{P} is the momentum of the B_s, \overrightarrow{d} is the distance between the primary and the B_s decay vertex, and m is the B_s mass

Imperial College Sources of proper time bias

The B_s proper time is given by

 $\tau = \frac{\overrightarrow{P} \cdot \overrightarrow{d} m}{|P|^2}$

Where \overrightarrow{P} is the momentum of the B_s, \overrightarrow{d} is the distance between the primary and the B_s decay vertex, and m is the B_s mass

HCb Monte Carlo B_s decay vertex $z_{reco} - z_{MC}$ (μm) 700 600 500 400 300 200 100 σĒ 40 60 20 80 100 $|\mathsf{P}_{\phi}|$ (GeV)

Is dominated by the vertex reconstruction the ϕ vertex becomes increasingly difficult to reconstruct as the $\overrightarrow{P}_{\phi}$ increases Control channel: $B_s \rightarrow J/\psi \phi$

3/30/2010

Imperial College Sources of proper time bias

The B_s proper time is given by

 $\tau = \frac{\overrightarrow{P} \cdot \overrightarrow{d} m}{|P|^2}$

Where \overrightarrow{P} s the momentum of the B_s, d is the distance between the primary and the B_s decay vertex, and m is the B_s mass

Is dominated by the vertex reconstruction the ϕ vertex becomes increasingly difficult to reconstruct as the $\overrightarrow{P}_{\phi}$ increases Control channel: B_s $\rightarrow J/\psi \phi$

Are dominated by the photon momentum reconstruction (ECAL resolution)

Control channel: $B_d \rightarrow K^* \gamma$

Proper time acceptance

• The efficiency to reconstruct and select events as a function of their proper time

- To keep it as simple as possible, we try to avoid lifetime biasing cuts at the trigger and offline selection level
- Nevertheless, is non trivial
 - Calibrate using $B_s \rightarrow J/\psi \phi$

Imperial College

1. For the proper time bias:

Imperial College

London

- □ Look at the difference between the ϕ vertex and the J/ ψ vertex in B_s → J/ $\psi\phi$
- **Ξ** Establish a γ momentum correction from $B_d \rightarrow K^* \gamma$ (by constraining the B_d mass)
- 2. For the proper time acceptance:

Again using $B_s \rightarrow J/\psi \phi$, compare the acceptance when cuts are applied to the J/ψ vertex and to the ϕ vertex

3. For the background model:

Study mass sidebands

Conclusion and outlook

- Radiative decays of B hadrons are sensitive probes of NP
 - A lot of measurements done by B factories using $B_d \rightarrow K^* \gamma$
 - The measurement of photon polarization (using $B_s \rightarrow \phi \gamma$) will require a lot of data and a very good control of systematics
- We already have a
 – Just need some highly energetic photons

Imperial College

Conclusion and outlook

- Radiative decays of B hadrons are sensitive probes of NP
 - A lot of measurements done by B factories using $B_d \rightarrow K^* \gamma$
 - The measurement of photon polarization (using $B_s \rightarrow \phi \gamma$) will require a lot of data and a very good control of systematics
- We already have a
 – Just need some highly energetic photons

Imperial College

- LHCb can make competitive measurements with early data (which I did not have the time to talk about)
 - World's best measurement of the direct CP asymmetry in $B_d \rightarrow K^* ~\gamma$
 - Ratio of BR $B_d \rightarrow K^* \gamma / B_s \rightarrow \phi \gamma$

References and backup slides

Imperial College London

References

- [1] C.Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008)
- [2] M.Misiak et al., Phys. Rev. Lett. 98, 022002 (2007)
- [3] The Belle Collaboration, Measurement of Inclusive Radiative B-meson Decays with a Photon Energy Threshold of 1.7 GeV, Phys. Rev. Lett.103:241801 (2009)
- [4] D. Atwood, M. Gronau and A. Soni, Phys. Rev. Lett. 79, 185 (1997)
- [5] The BaBar collaboration, Measurement of $B \rightarrow K^*(892)\gamma$ Branching Fractions and *CP* and Isospin Asymmetries, Phys. Rev. Lett. 103, 211802 (2009)
- [6] M. Matsumori, A. I. Sanda, and Y.-Y. Keum, Phys. Rev. D 72, 014013 (2005)
- [7] The LHCb Collaboration, B. Adeva et al, Roadmap for selected key measurements of LHCb, LHCb-PUB-2009-029, arXiv:0912.4179v1 [hep-ex]
- [8] Gautam Bhattacharyya, Gustavo C. Branco and Debajyoti Choudhury, Phys.Lett. B336 (1994) 487-493; Erratum-ibid. B340 (1994)
- [9] The BaBar collaboration, Phys. Rev. Lett. 98, 151802 (2007)
- [10] Michael Gronau, P and CP violation in B physics, Pramana62:255-268,2004
- [11] Jacques Lefrancois, Marie-H'elene Schune, LHCb-PUB-2009-008
- [13] John Ellis, Keith A. Olive, Yudi Santoso and Vassilis C. Spanos, Phys.Lett.B573:162-172,2003[14] arXiv:hep-ph/0609037

$\frac{\text{Imperial College}}{\text{London}} \quad S \text{ parameter from } B_d \rightarrow K^*(K_s \pi^0) \gamma \quad \frac{LHC}{\Gamma HC}$

Experiment		$N(B\overline{B})$	$S_{CP}(b \to s\gamma)$	$C_{CP}(b \to s\gamma)$	Correlation
			$K^*(892)\gamma$		
BABAR	[340]	431M	$-0.08 \pm 0.31 \pm 0.05$	$-0.15 \pm 0.17 \pm 0.03$	0.05
Belle	[341]	$535 \mathrm{M}$	$-0.32^{+0.36}_{-0.33} \pm 0.05$	$0.20 \pm 0.24 \pm 0.05$	0.08
Average			-0.19 ± 0.23	-0.03 ± 0.14	0.06
Confidence level			$0.43 (0.8\sigma)$		
	$K_s^0 \pi^0 \gamma \text{ (including } K^*(892)\gamma)$				
BABAR	[342]	232M	-0.06 ± 0.37	-0.48 ± 0.22	0.05
Belle	[341]	$535 \mathrm{M}$	$-0.10 \pm 0.31 \pm 0.07$	$0.20 \pm 0.20 \pm 0.06$	0.08
Average			-0.09 ± 0.24	-0.12 ± 0.15	0.06
Confidence level			$0.08~(1.8\sigma)$		

[12] Heavy Flavor Averaging Group, arXiv:0808.1297v3 [hep-ex] (2009)

Imperial College London

Branching Fraction and Photon Energy Spectrum for $b \rightarrow s\gamma$, The CLEO collaboration, Phys. Rev. Lett. 87, 251807 (2001)

FIG. 2. Observed laboratory frame photon energy spectrum (weights per 100 MeV) for on minus scaled off minus *B* backgrounds, the putative $b \rightarrow s\gamma$ plus $b \rightarrow d\gamma$ signal. No corrections have been applied for resolution or efficiency. Also shown is the spectrum from Monte Carlo simulation of the Ali-Greub spectator model with parameters $\langle m_b \rangle = 4.690$ GeV, $P_F = 410$ MeV/*c*, a good fit to the data.

Imperial College London

P.Ball, R.Zwicky

• S K*gamma S K*gamma is the time dependent CP asymmetry of B -> K* gamma. In 97 it was noticed that the standard model (V-A interaction !) produces mainly left handed photons in \bar B -> \bar K* gamma_L(R), O(m_s/m_b). A non-vanishing time dependent CPasymmetry demands both chiralities and is therefore very small \sim -2%. It was noticed that gluon emission from c and u-loops produce both chiralities and it was guestimated to give a contribution of -10% (hep-ph/0412019) plus a large uncertainty. We have performed a straightforward calculation and have shown that the contribution is 0.5% \pm 1% ! (hep-ph/0609037) and therefore S_K*gamma etc remain important (quasi) null tests of the standard model. The current HFAG value is S K^* gamma = -28 \pm 26 % ! All TDCP asymmetries for B-> V gamma are observables of primary interest for the SuperB-factory

[http://www.ippp.dur.ac.uk/~zwicky/]

Probing NP with radiative B decays

- 1. Direct CP and isospin asymmetry in $B \to K^* \; \gamma$
 - Results from experiment [5] agree with theory [6], but large errors
 - \square 0.033 < $A_{cp}~(B_d \rightarrow K^*~\gamma)$ < 0.028 (theory: <1%)
 - \Box 0.017 < Δ_{0-} < 0.116 (theory: ~ 4%)
 - LHCb can make a competitive measurement of $A_{cp} (B_d \rightarrow K^* \gamma)$ with only 100 pb⁻¹ [7]
- 2. The photon energy spectrum in inclusive $b \rightarrow s\gamma$ decays is a useful experimental test of
 - The parton model, mass of spectator quark and the motion of the b quark inside the hadron [3]
- 3. Inclusive $b \rightarrow s \gamma$ and $b \rightarrow d \gamma [8,9]$
 - Provide measurements of V_{ts} and V_{td} and their ratio
 - Compare to the ones measured in $\rm B_{s}$ and $\rm B_{d}$ oscillations
- 4. Photon polarization

Imperial College

1. $B_d \rightarrow K^*ee$

Imperial College

- Angle b/w the $K\pi\,$ plane and ee plane
- LHCb sensitivity to the the fraction of wrongly polarized photons is 0.1 for 2 fb⁻¹ [<u>11</u>]
- 2. $\Lambda_b \rightarrow \Lambda (p\pi)\gamma$
 - ${\rm A_{FB}}$ of the proton flight direction wrt the $\Lambda_{\rm b}$ in $\Lambda\,$ rest frame is proportional to the photon polarization
- 3. B to h1 h2 h3 gamma (K resonances)
 - Only K(1400) has sensitivity, need to separate it from the other resonances

4. Bs
$$\rightarrow f^{cp}\gamma$$