## W boson production in association with jets at ATLAS

Maria Fiascaris University of Oxford

> IOP 2010 March 30<sup>th</sup> 2010



### Aim & Outline



#### **Goal**:

- Feasibility study for the measurement of the  $W(e_v)$ +jets cross-section at the LHC with early data:
  - Assume 100 pb<sup>-1</sup> of integrated luminosity,  $\sqrt{s} = 10 \text{ TeV}$
  - Develop techniques for W+jets measurement, emphasis on data-driven methods
  - Focus on jet multiplicities Njets = 1, 2
  - Robust measurements for early data: ratio W+jets / Z+jets

 $\rightarrow$  All based on Monte Carlo simulations







#### **1)** Test of perturbative QCD:

- Broad kinematic acceptance of LHC: can explore unknown regions
- Large QCD background
- → Crucial to understand QCD!







#### **1)** Test of perturbative QCD:

- Broad kinematic acceptance of LHC: can explore unknown regions
- Large QCD background
- → Crucial to understand QCD!
- 2) Background to SM and Beyond the SM processes:

Top Higgs SUSY









√s

TeV

Events / s for 2 = 1034 cm-2





#### 1) Test of perturbative QCD:

- Broad kinematic acceptance of LHC: can explore unknown regions
- Large QCD background
- → Crucial to understand QCD!
- 2) Background to SM and Beyond the SM processes: Top

Higgs SUSY

- To make **new discoveries** we need to **understand the SM** first!
- W (and Z) bosons copiously produced at LHC
   → abundant statistics for detector performance studies: Jet algorithms
   Lepton reconstruction & missing transverse energy
  - in high jet multiplicity environment



# W + jets production @ LHC



- W cross-sections at LHC are **10 times larger** than at the Tevatron
- Production in association with multi-jets also enhanced

 $\sigma \cdot BR \quad (W \rightarrow e_{\nu}) [pb] \quad (from M.Mangano)$ 

| N Jets →        | 1    | 2    | 3   | 4    | 5    |
|-----------------|------|------|-----|------|------|
| <b>Tevatron</b> | 230  | 37   | 5.7 | 0.75 | 0.08 |
| LHC             | 3400 | 1130 | 340 | 100  | 28   |

Et(jet)>20 GeV, |n|<2.5,  $\Delta R=0.7$ ,  $\sqrt{s} = 14$  TeV

#### **W+0 partons** (LO) → need q, qbar:

valence-valence process at Tevatron valence-sea, sea-sea process at LHC

#### W+1 partons:

 $q q bar \rightarrow W g$  (Tevatron)  $q q \rightarrow W q' (LHC)$ 

#### → At LHC W + jets is enhanced:

large contribution from gluon large phase space available for additional jets





### W + jets Event Selection



#### $W(e_{\nu})$ + jets cross-section

- Electron  $p_T > 25$  GeV,  $|\eta| < 2.5$
- > Neutrino  $p_{\tau} > 25 \text{ GeV}$
- > Jets
  - > Algorithm Anti- $K_{\tau}$  with R=0.4
  - ▷ p<sub>T</sub> > 30 GeV, |eta| < 3.1</p>

#### W Offline selection

- Single isolated electron trigger
- >  $N_{ele} = 1$  in acceptance + particle identification
- Missing Transverse Energy > 25 GeV

| Statisti        | cal sig  | gnific   | ance       | tor o    | littere | ent <b>j</b> e | et p <sub>r</sub> | CUIS  |
|-----------------|----------|----------|------------|----------|---------|----------------|-------------------|-------|
| t st            |          |          |            |          |         |                | · · · · ·         | -     |
| U 4000          | <b>^</b> |          | Nje        | ts=2     |         |                |                   | 1     |
| <u>щ</u> 12000- |          |          | ,          |          |         |                |                   | - 0.9 |
|                 |          |          |            |          |         |                |                   | 0.8   |
| 10000           |          | <b>A</b> |            |          |         |                |                   | 0.7   |
| 8000            |          |          | $\bigcirc$ |          |         |                |                   | 0.6   |
|                 |          |          | C          |          |         |                |                   | 0.5   |
| 6000            |          |          |            | <b>^</b> |         |                |                   | 0.4   |
| 4000            | A T I A  | C        | ek in e    |          | •       |                |                   | -0.3  |
| F               | AILA     | 5 WOI    | ктр        | nogre    | 55      |                | <b>A</b>          | -     |
| E.              | 20       | 25       | 30         | 35       | 40      | 45             | 50                |       |
|                 |          |          |            |          |         | Jet p_ (       | Cut (Ge           | V)    |

#### **Additional Event Selection Cuts**

- Jet / electron performance deterioration
- > Minimum electron-jet separation:

#### $\Delta R$ ele-jet > 0.6

Minimum jet-jet separation

 $\Delta R$  jet-jet > 0.6



### Signal and Backgrounds









### **Electron Efficiencies**



Electron Trigger/Reconstruction efficiencies can be determined using a **data-driven method** on  $Z \rightarrow ee$ :

#### Tag and Probe (T&P)

- One electron passes tight selection (Tag)
- Measure efficiency on 2<sup>nd</sup> lepton from Z (Probe)
- Invariant mass cut to reject background

Eff = N T&P pairs (probe passing cuts) N pairs





- Main background from QCD-jets
   Background subtraction needed (global fit of S+B)
- Efficiency calculated in steps:

 $\epsilon = \epsilon_{\text{Reco}} \epsilon_{\text{PID}} \epsilon_{\text{Trig}}$  $\epsilon_{\text{Reco}}$ = reconstruction eff

 $\epsilon_{PID}$  = particle identification eff (wrt reco)

 $\boldsymbol{\epsilon}_{\mathsf{Trig}} = \mathsf{trigger eff} (\mathsf{wrt PID})$ 



### **Electron Efficiencies**





#### Extrapolation of efficiencies form Z to W non-trivial:

- > Parametrize efficiencies in  $\eta$   $p_{T}$ , (charge due to W asymmetry)
- > For **100 pb<sup>-1</sup>** and **1%** statistical uncertainty few  $\eta p_T$  bins possible (barrel-endcaps, 4  $p_T$  bins)
- Assess systematic uncertainties on W +jets cross-section from using T&P eff.

### Systematic Uncertainties





### Systematic Uncertainties





### Early data measurement



- Measurement of W+jets cross-section dominated by systematic uncertainties on jets
- Robust measurements for early data are ratios



March 30<sup>th</sup> 2010



### Conclusions



- W + jets is an interesting process on its own (test QCD) and it is crucial for new physics discoveries
- Investigated techniques for measuring  $W(e_v)$ +jets with focus on:
  - Event selection
  - Backgrounds
  - Efficiencies
- Measurement limited by uncertainties on jets:
  - For early data plan to measure ratio W+n jets / Z + n jets
  - Focused on 100 pb<sup>-1</sup> of data, but plan to perform first ratio measurement with 10 pb<sup>-1</sup> (stat. error 6% for 1 jet bin, 11% for 2 jets)

### → Looking forward to seeing first Ws and Zs in ATLAS!







| March 30 <sup>m</sup> 2010 | M. Fiascaris |  |
|----------------------------|--------------|--|







- ATLAS default algorithm: sequential recombination algorithm Anti-Kt
- Standard Kt algorithm:
  - $d_{ij} = \min(k_{T_i}^2, k_{T_j}^2) \Delta R_{ij}^2/D^2$

\*dij is the minimal transverse momenta of one jet wrt to the other

 $\Delta R_{ij}^2 = (y_i - y_j)^2 + (\varphi_i - \varphi_j)^2$ , i and j can be particle, pre-clusters  $k_T$  is the object transverse momentum D is a parameter of the jet algorithm (~size)

- $d_i = k_{T_i}^2$
- Find smallest distance:
  - if it is  $d_{ii}$ : recombine objects i and j
  - If it is d<sub>i</sub>: call i a jet and remove it from list of objects
  - Recalculate distances and re-iterate until no objects are left
- Anti-Kt is a generalization:
  - $d_{ij} = \min(k_{T_i}^{2p}, k_{T_j}^{2p}) \Delta R_{ij}^2/D^2$
  - **d**<sub>i</sub> = **k**<sub>T i</sub><sup>2p</sup>
    p=-1

- ➔ Algorithm is infra-red and collinear safe
- → Generate circular hard jets



### Lepton Vetos



600



- background
- Isolated track veto reduces also other backgrounds
- Other considerations: signal efficiency, loss in statistics, systematic uncertainties (more later)

0.75

0.7

0.65

0.6

0.55

0.5

100

Track Cut

150

EM Fraction Cut

200

EM Frac. + Track Cut

250

300

450

HT (GeV)

400

ATLAS work in progress

350





- → Data-driven techniques whenever possible to minimize dependence on MC
- → Different independent methods for cross-checking predictions
- Z(ee), Z( $\tau\tau$ ), dibosons backgrounds: small and well understood  $\rightarrow$  lepton vetos + estimate from MC
- $W(\tau v)$ : important background and difficult to reduce  $\rightarrow$  study additional  $\tau$  veto?
- Ttbar production and QCD: important backgrounds, data-driven methods



50

100

150

200

250

myMET et

250