

MSSM Higgs → ττ Searches at the ATLAS Experiment

Katharine Leney

Institute of Physics Joint HEPP-APP Meeting, UCL 30th March 2010

Overview

- Introduction to MSSM analysis
 - Motivations
 - Event selection.
- Tau ID in early data
- Backgrounds
 - Single top contribution
 - Angular correlations
- Summary

MSSM Higgs

Minimal Supersymmetric Standard Model requires two Higgs doublets:

- 5 observable Higgs bosons:
 - 3 neutral (h/A/H)
 - 2 charged (H^{\pm})

Higher production crosssection than for SM Higgs potential to make discovery/ exclusion with much less data.

- Produced in association with 0, 1 or 2 b-jets
- Decays into 3rd generation fermions strongly enhanced for large regions of phase space decays into pair of tau leptons important channel

τ-Decay Characteristics

$$BR(\tau \rightarrow e/\mu + \nu_{\tau} + \nu_{e/\mu}) \approx 35\%$$
$$BR(\tau \rightarrow jets + \nu_{\tau}) \approx 65\%$$

Missing E_T always present due to neutrinos.

Hadronic **\tau-jets**:

- Well collimated
- Low multiplicity
- Deposits in both hadronic and EM calorimeters.
- One or three tracks matching the calorimeter deposition.

$MSSM H \rightarrow \tau\tau \rightarrow lh$

ATLAS Tau ID Evolution

Start to understand and validate calorimeter.

Use cut-based tau-ID calculated with just a handful of calorimeter variables; e.g. EM Radius, isolation fraction.

Start to understand and validate tracking. Incorporate some tracking info into cut-based tau-ID; e.g. E_T/P_T (lead track), $E_T(EM)/\Sigma P_T$ (tracks).

Intermediary steps: Provide likelihood based tau-ID using only "safe" variables(?) Validate other variables and use to provide cut based ID.

> Gain understanding of calorimeter & tracking. Validate other variables and incorporate into likelihood based tau-IDs (full tau ID).

Each available in: Loose ($\varepsilon = 70\%$), Medium ($\varepsilon = 50\%$) and Tight ($\varepsilon = 30\%$)

M

E

Tau Cut Safe Calo+Tracking

Tau Cut Safe

Calo Only

Tau Cut

Effects of Using "Safe" Tau ID

- Studied performance of analysis using different safe tau ID options:
 - Looser tau ID better when background has many real taus (statistical feature).
 - Tighter tau requirements better when background has many jets faking taus.
 - Medium provides best results once all backgrounds are considered.

Backgrounds

Dominant backgrounds to MSSM analysis are $Z \rightarrow \tau \tau$, W & ttbar.

$Z \rightarrow \tau \tau$ (+ jets)

- Irreducible.
 - True di-tau final state.
 - Similar kinematics.
- Important for low mass scenarios, where signal falls on tail of Z-peak.

W $\rightarrow e/\mu/\tau_l + v (+ jets)$

- Large production cross-section.
- Real lepton + missing E_T.
- Jets in event fake hadronic tau.

ttbar

- $tt \rightarrow WbWb (W's \rightarrow e/\mu/\tau + \nu \text{ or jets}).$
 - Possibility to have true lepton plus hadronic tau final state.
 - Hadronic jets (from W-decay) faking taus.
 - b-jets in signal and background.
 - Leptons from b-decay.
- More significant as m_H increases.

Others include $Z \rightarrow ll$ (+ jets), $W \rightarrow \tau_h v$ (+ jets), QCD. Single top was previously considered negligible, due to it's small cross-section.

Single Top Background

- One or two b-jets:
 - Can fake tau jets
 - Can decay to leptons
 - MSSM Higgs can be produced in association with b-jets too.
- Real tau or leptons from W decay.
- Missing E_T from neutrino(s).

- t-channel dominates (x-sec ~20 times larger than for s-channel.
- Wt has smaller x-sec than t-channel, but has 2 W's, so possibility to produce a true lepton + hadronic tau final state.

Single Top Background

Single top previously considered negligible (due to small x-sec), but shown to be significant (up to ~30% of ttbar's), esp at higher m_H.

- Dominant contribution from associated production (Wt) mode.
- Modes where $W \rightarrow e/\mu$ more significant than those where $W \rightarrow \tau$.

Katharine Leney

Angular Correlations

Plotting $\cos(\phi_{lep} - \phi_{MET})$ vs. $\cos(\phi_{\tau} - \phi_{MET})$ we see very different distributions for signal and background processes. (Unfortunately, not useful to reject $Z \rightarrow \tau \tau$ which has same kinematics.)

MSSM $H \rightarrow \tau \tau$ $W \rightarrow e/\mu/\tau \nu$

Angular Correlations

Angular Correlations

- Cut on $\cos(\phi_{\text{lep}} \phi_{\text{MET}}) + \cos(\phi_{\tau} \phi_{\text{MET}}) > -0.15$.
 - (Slightly higher significance at 0, but then in dangerous 'shoulder' region.)
- Cut at > -0.15 maintains high signal efficiency and good S/\sqrt{B} .
 - Distribution will depending strongly on ϕ_{MET} distribution.

Katharine Leney

Cross-Sections (pb): m_H = 120 GeV

	$MSSM~H(120) \rightarrow \tau\tau$	$Z \to \tau \tau$	$t\bar{t}$	Single Top (Wt)	Single Top $(s + t - channels)$
Start	8.96 ± 0.05	$1.36\mathrm{e}{+03} \pm 1.75\mathrm{e}{+00}$	218.07 ± 0.21	14.41 ± 0.14	45.65 ± 0.25
Trigger	4.00 ± 0.03	243.43 ± 0.74	136.72 ± 0.17	8.83 ± 0.11	24.10 ± 0.19
Lepton p_T	2.84 ± 0.03	156.47 ± 0.60	110.11 ± 0.15	7.36 ± 0.10	19.53 ± 0.18
$Di - lepton \ Veto$	2.80 ± 0.03	141.54 ± 0.57	97.40 ± 0.14	6.58 ± 0.10	19.41 ± 0.18
Tau ID	0.70 ± 0.01	13.50 ± 0.17	8.29 ± 0.04	0.47 ± 0.03	0.67 ± 0.03
Charge Correlation	0.70 ± 0.01	12.84 ± 0.17	5.87 ± 0.03	0.35 ± 0.02	0.41 ± 0.03
Missing p_T	0.31 ± 0.01	3.96 ± 0.09	5.34 ± 0.03	0.30 ± 0.02	0.37 ± 0.03
$Sum2Cos \leq -0.15$	0.30 ± 0.01	3.80 ± 0.09	2.72 ± 0.02	0.15 ± 0.01	0.11 ± 0.01
Transverse Mass	0.27 ± 0.01	3.43 ± 0.09	0.62 ± 0.01	$4.04e-02 \pm 7.63e-03$	$3.26e-02 \pm 6.97e-03$
$N_{Jets} < 3$	0.26 ± 0.01	3.27 ± 0.09	0.13 ± 0.01	$2.16e-02 \pm 5.58e-03$	$2.52e-02 \pm 6.48e-03$
Collinear Approximation	$9.16e-02 \pm 4.92e-03$	0.74 ± 0.04	$1.00e-02 \pm 1.43e-03$	$4.32e-03 \pm 2.50e-03$	$2.17e-03 \pm 1.04e-03$
Visible Mass	$1.67e-02 \pm 2.10e-03$	$9.74e-02 \pm 1.49e-02$	$9.13e-03 \pm 1.44e-03$	$0.00e+00 \pm 0.00e+00$	$1.57e-04 \pm 1.57e-04$
Mass Window	0.17	0.84	0.019	0.006	

	$Z \rightarrow ll$	$W \rightarrow l \nu$	W ightarrow au u	$QCD \ (single \ lepton \ filter)$
Start	$2.61e+03 \pm 8.35e-01$	$2.42\mathrm{e}{+04}\pm8.17\mathrm{e}{+00}$	$1.32\mathrm{e}{+04} \pm 1.02\mathrm{e}{+01}$	$2.54\mathrm{e}{+10} \pm 3.74\mathrm{e}{+07}$
Trigger	$2.06e+03 \pm 7.42e-01$	$1.48\mathrm{e}{+04}\pm6.37\mathrm{e}{+00}$	$1.29\mathrm{e}{+03} \pm 3.25\mathrm{e}{+00}$	$2.49e + 09 \pm 1.13e + 07$
Lepton p_T	$1.88e+03 \pm 7.09e-01$	$1.27\mathrm{e}{+04} \pm 5.88\mathrm{e}{+00}$	805.88 ± 2.57	$9.98e+07 \pm 2.07e+06$
$Di - lepton \ Veto$	971.57 ± 0.51	$1.27\mathrm{e}{+04}\pm5.88\mathrm{e}{+00}$	805.66 ± 2.57	$9.97e+07 \pm 2.07e+06$
Tau ID	12.51 ± 0.06	68.14 ± 0.43	5.92 ± 0.22	$4.72\mathrm{e}{+04} \pm 1.09\mathrm{e}{+04}$
Charge Correlation	9.45 ± 0.05	47.50 ± 0.36	3.99 ± 0.18	$1.57e+04 \pm 4.70e+03$
Missing p_T	0.91 ± 0.02	38.57 ± 0.32	3.25 ± 0.16	$2.69e+03 \pm 8.38e+02$
$Sum2Cos \leq -0.15$	0.37 ± 0.01	8.52 ± 0.15	1.47 ± 0.11	$1.88\mathrm{e}{+03}\pm6.93\mathrm{e}{+02}$
Transverse Mass	0.12 ± 0.01	2.04 ± 0.08	1.11 ± 0.10	$1.86\mathrm{e}{+03}\pm6.93\mathrm{e}{+02}$
$N_{Jets} < 3$	0.12 ± 0.01	1.93 ± 0.07	1.07 ± 0.09	$1.39e+03 \pm 6.09e+02$
Collinear Approximation	$1.04e-02 \pm 1.67e-03$	0.13 ± 0.02	$9.02e-02 \pm 2.72e-02$	16.43 ± 16.43
Visible Mass	$4.53e-03 \pm 1.10e-03$	$5.32e-02 \pm 1.20e-02$	$3.28e-02 \pm 1.64e-02$	$0.00\mathrm{e}{+00}\pm0.00\mathrm{e}{+00}$
Mass Window	0.015	0.18	0.12	(Too few statistics)

Exclusion Prospects

Possibility to exclude MSSM Higgs at higher values of tan β over wide mass range using first ATLAS data: 200 pb⁻¹ @ 10 TeV - expect this to scale to ~ 500 pb⁻¹ @ 7 TeV.

Back Up

Object Selection

Electron:

- pT>10GeV
- |eta|<2.7
- ElectronAuthor=1 or 3
- ElectronMediumNoIso
- ElectronEtcone20/pT<0.2

Jet:

- Cone4 Topo
- pT > 20GeV
- letal < 4.8

Missing Et:

• RefFinal

Muon:

- pT>8GeV
- |eta|<2.7
- StacoIsCombinedMuon
- StacoBestMatch
- StacoMatchChi2<100
- StacoFitChi2<500
- StacoEtcone20/pT<0.2

Tau:

- pT > 20 GeV
- letal<2.7
- TauCutSafeCaloMedium
- TaujetNTrack = 1 or 3
- |TaujetCharge| = 1
- ElectronVeto
- MuonVeto

Overlap Removal: muon \rightarrow electron \rightarrow tau \rightarrow jet

Triggers: EF_e12_medium, EF_mu10

Jet Multiplicity

ATLAS Work in progress

Cut on N_{jets} < 3 • Effective at removing ttbar and single top backgrounds.

"Safe" b-Tagging

MSSM Higgs produced in association with 0, 1 or 2 b-jets.

- Use b-tagging methods suitable for use in early data to select b-jets
 - 4 different variables available.
 - Even best performer offers very low efficiency (~35%) for relatively little gain in significance (4.2 to 6.2).
 - Expect actual performance to be worse, so don't make any requirements on b-jets in early analysis.
- Review results as btagging methods mature.

E.g. SV0: Returns signed distance (in 3D) between found inclusive SV and the PV, divided by its error.

Effects of Using "Safe" Tau ID

- Studied performance of analysis using different safe tau ID options:
 - $S/\sqrt{B} = 1.2$ at 200 pb⁻¹, using best performing "safe" ID
 - $S/\sqrt{B} = 1.6$ at 200 pb⁻¹, using best performing likelihood based tau ID (uses all variables for once detector is fully understood and validated).

Latest Tevatron Results

