## Fully hadronic $t\bar{t}H$ and $t\bar{t}$ final states

#### Michael Nash<sup>12</sup>

<sup>1</sup>University College London

<sup>2</sup>Rutherford Appleton Laboratory

Institute of Physics, 2010





Science & Technology Facilities Council Rutherford Appleton Laboratory

1/14

イロン 不可と 不同と 不同と

#### Motivation

Event types and decays Triggering Event generation and simulation

Event type and backgrounds



• Higgs hunting

• Measuring Yukawa coupling  $V \approx g \overline{\Psi} \phi \Psi$ 

イロト イヨト イヨト イヨト

2/14

#### Motivation

Event types and decays Triggering Event generation and simulation

Event type and backgrounds



•  $\sigma_{\rm NLO} \left( pp \rightarrow t\bar{t}b\bar{b}; \sqrt{s} \sim 14 \text{ TeV} \right) \sim 2600 \text{ fb}$ 

- High jet multiplicity challenging combinatorics
- Similar kinematics to  $t\bar{t}H$ 
  - Background to *t*tH
  - Needs *b*-tagging

t decays b-jets and b-tagging

#### Hadronic t decays





- *b*-jets are the common signature
  - 4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ペ
    4/14

t decays b-jets and b-tagging

#### Branching ratios



t decays b-jets and b-tagging

## *b*-jets



Event display showing tracks

イロト イヨト イヨト イヨト

t decays b-jets and b-tagging

# b-tagging



*b*-jets characterised by displaced vertex

- e.g. lifetime of  $B_s$  is  $\sim 1.5$  ps
- Gives vertex displacement of O(1 mm)

Rejection vs. efficiency of b-tagging (using impact parameters and secondary vertex finding) in ATLAS

Rates and other issues Fully hadronic *t*t Fully hadronic *t*tH

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

8/14

### Rates and *b*-tagging

- Hadronic  $t\bar{t}$  cross section ~ 800 pb
  - Luminosity  $10^{31}$  cm<sup>-2</sup>s<sup>-1</sup>, event rate  $\sim 70$  per day
- But fully hadronic  $t\bar{t}H$  cross-section  $\sim 460~{\rm fb}$ 
  - Luminosity  $10^{31}$  cm<sup>-2</sup>s<sup>-1</sup>, event rate  $\sim 0.4$  per day

• *b*-tagging efficiency  $\sim 0.5$ 

Rates and other issues **Fully hadronic** *t*<del>t</del> Fully hadronic *t*<del>t</del>*H* 

• • • • • • • •

#### Fully hadronic $t\bar{t}$ event type



- At least 6 jets
- No leptonic signature ... reliant on high rate jet triggers
- At least 2 *b*-jets i.e. dependent on *b*-tagging
  - Provides a possible way to lower rate
  - Implemented in software trigger levels

Rates and other issues **Fully hadronic** *t*<del>t</del> Fully hadronic *t*<del>t</del>*H* 

## Triggers for fully hadronic $t\bar{t}(*)$

- Four jets of E > 20 GeV
  - Prescaled in  $10^{31}$  cm<sup>-2</sup>s<sup>-1</sup> and  $10^{32}$  cm<sup>-2</sup>s<sup>-1</sup> menus (2000 and 4000 respectively)
- Four jets of E > 40 GeV
  - Unprescaled at  $10^{31}$  cm<sup>-2</sup>s<sup>-1</sup> but prescale of 100 at  $10^{32}$  cm<sup>-2</sup>s<sup>-1</sup>
  - Efficiency  $\sim 70\%$
  - Useful for 2010 runs
- Three jets of E > 80 GeV
  - Not in  $10^{31}$  cm $^{-2}s^{-1}$  menu, unprescaled in  $10^{32}$  cm $^{-2}s^{-1}$  menu
  - Higher jet energy trigger value, reducing efficiency
  - 84% of events that pass this trigger have at least six offline jets

Rates and other issues Fully hadronic tt Fully hadronic ttH

### Kinematic biasing of the fully hadronic $t\bar{t}(*)$



- Selected events have 3rd jet  $p_T$  above 80 GeV
- Collinear jets ( $\Delta \phi \sim 0, \pi$ ) are favoured

Rates and other issues Fully hadronic  $t\bar{t}$ Fully hadronic  $t\bar{t}H$ 

# Triggers for fully hadronic $t\bar{t}H(*)$

- Greater jet multiplicity than  $t\bar{t}$
- However, 4 *b*-jets
  - triggering on *b*-jets lowers efficiency
  - but increases purity
- Unlike for  $t\bar{t}$  need *b*-jet triggers for  $t\bar{t}H$
- Only practical *existing* trigger 3 *b*-jets, jet energy > 20 GeV
  - $\bullet~$  Low thresholds  $\rightarrow$  little biasing
  - Unprescaled at  $10^{31} \text{ cm}^{-2} s^{-1}$ ,  $10^{32} \text{ cm}^{-2} s^{-1}$
- However studies Monte Carlo only
  - Low number of events
  - MC data trustworthy?

Problems

#### Practical issues

- For complicated event types, the best approach would be a matrix element approach
  - i.e. all jets produced via NO or NLO matrix element calculation
  - As opposed to using simpler events types with added gluon radiation
  - e.g. Sherpa vs. Pythia
- However, that would take O(months) to calculate matrix elements for 6-8 jet events in QCD
  - Accuracy for multi-jet events in question
- Theoretical cross-section errors for fully hadronic  $t\bar{t}b\bar{b}$  are ~ 77% of the cross section, with K factors for LO  $\rightarrow$  NLO of 1.8 (*Phys. Rev. Lett.* **103** 012002)
  - Rates unpredictable, making trigger chain design and choice even harder

Problems

## Conclusion

- $t\bar{t}H$  is a long term goal of ATLAS
  - Not a goal for 1 fb<sup>-1</sup> of integrated luminosity at  $\sqrt{s} = 7$  TeV

<ロ> <部> < 2> < 2> < 2> < 2> < 2> < 2

14/14

- Hadronic  $t\bar{t}$  will be measurable.
  - Will be able to study:
    - Jet Monte Carlo accuracy
    - *b*-jet triggers
  - And measure the cross section soon