Search for $H \rightarrow ZZ \rightarrow IIbb$ at High Mass with ATLAS

David Hadley

- The main high mass channel is $H \rightarrow 4I$.
- H→ZZ→llbb has higher backgrounds but also higher branching fraction.

− BR(ZZ \rightarrow IIbb) / BR(ZZ \rightarrow 4I) = 4.5

- Useful at high masses to add to significance of discovery/exclusion.
- An independent channel to cross-check results.

Signal and background cross sections

- Significant backgrounds to contend with.
- MCFM NLO signal cross-section × BR(ZZ):

- Signal ≈ 4pb in best case Higgs mass at 14TeV.
- Main backgrounds are:
 - Z (≈ 60nb @ 14TeV)
 - ttbar (≈ 900pb @ 14TeV)
 - ZZ (≈ 15pb @ 14TeV)
- Many orders of magnitude difference in cross-sections.

Event Selection

- Electron identification cuts on many variables:
 - Hadronic leakage and calorimeter shower shape
 - Track quality cuts and track-cluster matching
 - Transition radiation tracker.
 - Three standard sets of cuts used in ATLAS:
 - Loose (best efficiency), medium, tight (best background rejection).

- Several muon reconstruction algorithms:
 - Match muon spectrometer tracks to interaction point (standalone).
 - Combine muon spectrometer tracks with inner detector tracks (combined muons).

Trigger Efficiency

• An efficient lepton trigger is essential for this study.

- ATLAS trigger consists of:
 Level 1 (L1) hardware based trigger.
 Level 2 (L2) and Event Filter (EF).
- Efficiencies have been checked against the primary electron/muon triggers in the 10³¹ trigger menu.
- Trigger efficiency after event selection
 ≈98%.

Jet Selection

- B-tagging required to reduce the large backgrounds.
- Several b-tagging algorithms used in ATLAS.
- High precision tracking used to identify:
 - Secondary vertices.
 - Tracks with high impact parameter.
- Use advanced b-tagging algorithm to estimate expected performance when tracking and flavour tagging are fully commissioned.

- •Require 2 jets with weight > 0.
- •Excellent rejection of light jets.

- At high Higgs mass, Z are boosted.
- b-jets are correlated in φ.
- Require $\Delta \phi < \pi/2$ for $M_H \ge 300 \text{GeV}$.

- Signal and background after event selection for 2 mass points.
 Scaled to 1fb⁻¹.
- Simple scaling of jet energy to Z mass to improve resolution.
- Low event yields.
- Good signal to background ratio at higher masses.

- Estimate expected confidence limits using the CL_s method
 - Calculated with mclimit (T.Junk, Nucl. Instrum. Methods A 434, 435).
- Normalisation uncertainties of signal and backgrounds.
 - 10% normalisation error on signal and backgrounds.
 - Luminosity 5% (all channels correlated).
 - b-tag efficiency uncertainty 5% (all channels correlated).
- Estimate of shape uncertainty is taken from un-tagged mass distribution.

Expected Exclusion Confidence Limits

- Expected exclusion limits with 1fb⁻¹. without systematics, with systematics:
 - 10% signal+background normalisation
 - 5% luminosity
 - 5% b-tagging
 - shape error from untagged distribution.
- Good exclusion power even with pessimistic systematics.

Expected Exclusion Confidence Limits

- Expected exclusion limits with 1fb⁻¹ compared with 4l results.
- 4l includes only statistical errors.
- Competitive with 4l, especially at very high mass.
- Improved sensitivity when the channels are combined.

Summary

- Results show that this can be a useful channel to add significance to a discovery/exclusion especially at high mass (M_H>300GeV).
- Systematics are small compared to statistics (at 1fb⁻¹).
- Results shown are for 14TeV. Repeat of analysis for 7TeV is underway.
- Work on going to improve/optimise the analysis.
- Focus is on high mass where this channel is most useful.

Backup Slides

LOCAL DEC

H→ZZ→llbb - David Hadley

Cut Flow

Cut	Signal Efficiency (M _H =400)	Z->ee rejection	Z->mumu rejection	ttbar Rejection
All	100	1	1	1
2e	0.36	3	-	22
2mu	0.42	-	2	46
MET cut	0.64	3	2	86
Zll mass	0.60	3	2	378
Bjet	0.18	7037	5758	1663
Zbb mass	0.15	18095	14729	6414

Cross-section X Branching Fraction

- MCFM cross-section X branching fraction for gluon-gluon fusion (left) and vector-boson fusion (right) for 7TeV, 10TeV and 14TeV.
- gg is the dominant production mode.