Prospects for a Charged Higgs Search with Early ATLAS Data

Jenna Lane, University of Manchester IoP Meeting, UCL 30th March 2010

Charged Higgs in top decays

• Event selection

Analysis method

• Expected upper limits on B(t -> H⁺b) with 200 pb⁻¹ of 10 TeV data.

Charged Higgs in Top Decays

- The minimal supersymmetric extension to the standard model, together with a two higgs doublet model, predicts five higgs bosons: H, h, A, H[±].
- Discovery of a new charged boson would be direct evidence for new physics.
- Production mechanism for H⁺ depends on the mass.
- For a light H⁺ (lighter than M_t M_b), then the main production mechanism would be via the decay of a top quark.
- Predicted branching ratio t -> H⁺b depends on tanβ (experimentally difficult at medium tanβ).
- Decay mode of H^+ also depends on tan β .

 H^{-}

Decay Channel

- Use semi-leptonic ttbar decay.
- One W boson is replaced by a H⁺ and decays to two jets.
- Good candidate decay for MSSM at low $tan\beta$.

Analysis strategy:

- Reconstruct di-jet from H⁺ and look for a second peak in the SM W mass distribution.
- Assume B(H⁺->csbar) = 1 and try to set limits on B(t->H⁺b).
 - Analysis has already been done at the Tevatron (CDF)

Charged Higgs mass (GeV)	B(t->H ⁺ b) Upper Limit @ 95% CL
90	0.22
110	0.14
130	0.08
150	0.12

- LHC $\sigma_{\rm tt}$ ~ two orders of magnitude larger than Tevatron
- Expect lots of ttbar events.
- With a small amount of data we have the potential to compete with the Tevatron results.

Signal and Backgrounds: Event Selection

- The SM ttbar decay in the semi-leptonic channel is an irreducible background.
- Other backgrounds are single top and W + jets.
- QCD background is not considered and will be estimated from data.
- Signal samples generated at 90, 110, 130, 150 GeV using Pythia.
- ttbar background generated with MC@nlo
- Analysis assumes a 10 TeV centre of mass energy.

Event selection cuts:

- Exactly 1 electron or muon with $p_T > 20$ GeV, $|\eta| < 2.5$. Isolation 6 GeV in a cone 0.2
- Missing $E_T > 20 \text{ GeV}$
- At least 4 jets with $p_T > 20 \text{ GeV}$
- 2 of the 4 leading jets are b-tagged.

• Want better separation between signal and background.

The Kinematic Fit

• Define a χ^2 function that describes the event, and minimise, allowing jet and lepton energies to vary in the fit within experimental resolutions.

$$\chi^{2} = \sum_{\substack{i = lepton, \\ 4 \text{ jets}}} \frac{\left(p_{T}^{i, fit} - p_{T}^{i, meas}\right)^{2}}{\sigma_{i}^{2}} + \sum_{j = x, y} \frac{\left(p_{j}^{UE, fit} - p_{j}^{UE, meas}\right)^{2}}{\sigma_{UE}^{2}} + \sum_{j = jjb, lvb} \frac{\left(M_{k} - M_{top}\right)^{2}}{\sigma_{top}^{2}} + \frac{\left(M_{lv} - M_{W}\right)^{2}}{\sigma_{W}^{2}}$$

• Have constraints on the reconstructed top and W mass – the χ^2 reflects how much the event looks like a ttbar event.

- Fitted distributions requiring $\chi^2 < 10$ and on the hadronic side of the decay M_{top} before fitting < 195 GeV.
- Improves separation between signal and ttbar background.
- χ² cut is also powerful to remove non-ttbar background events

For 200 pb⁻¹ Scenario at 10 TeV

• Cut flow for the signal and main backgrounds.

Process	No Cuts (N events)	Lepton	МЕТ	4 jets	2 btags	trigger	χ ² < 10	Mtop < 195 GeV
H+ (90 GeV)	4757	0.395	0.897	0.624	0.254	0.880	0.379	0.831 (74)
H+ (110 GeV)	4757	0.401	0.901	0.620	0.221	0.881	0.404	0.857 (72)
H+ (130 GeV)	4757	0.403	0.894	0.605	0.181	0.878	0.345	0.860 (49)
H+ (150 GeV)	4757	0.413	0.891	0.553	0.125	0.884	0.308	0.845 (28)
SM ttbar no all had	43680	0.390	0.906	0.507	0.270	0.883	0.425	0.860 (683)
Single Top	11792	0.407	0.894	0.172	0.195	0.882	0.236	0.800 (24)
W + jets	55220	0.367	0.860	0.333	0.008	0.894	0.190	0.750 (6)

<u>Signal</u>

- Numbers of events assume $B(t \rightarrow H^+b) = 0.1$ and $B(H^+->csbar) = 1$.

Limit Setting (Maximum Likelihood)

• Assume no signal and use binned maximum likelihood based on template mass distributions.

• Three fit parameters:

- B(t -> H+b)

- Total N_{tt} (into all decay modes: over all normalisation uncertainties absorbed)
- N_{bkg} (Total number of non-ttbar background)
- Test LH fit performance using set of 1000 PE (PE).
- LH shape gives information for limit setting.
 - 1. Maximise LH to fit 3 parameters.
 - 2. Scan LH from $B(t->H^+b) = 0$ to 1 with fitted values of N_{tt} and N_{bkg} to obtain 95% CL upper limit on $B(t->H^+b)$.

Systematic Uncertainties

- Systematic uncertainties have two effects on the limit setting:
 - Acceptance changes
 - Shape of di-jet mass distribution
- Model the effect of each systematic uncertainty in the MC
- Use new distributions to create pseudodata.
- Repeat LH fit, but fit to nominal templates and check the effect on the upper limit.
- An example case for 90 GeV H⁺.
- Systematic due to Jet Energy Scale (JES) is small
- Have applied a recalibration to the jet energies based on the position of the W mass peak in SM ttbar decays.

Systematic	Δ(B)		
Jet Energy Resolution	0.0584		
Jet Energy Scale	0.0011		
MC Generator	0.0180		
ISR/FSR	0.0550		
b-jet Energy Scale	0.0327		
Lepton Energy Scale	0.0015		
Combination	0.0942		

Nominal $B(t->H^+b) = 0.0584$

Final Limits

- For final limits including systematics use a smeared LH.
- Convolute LH with a Gaussian whose width describes the combination of all systematics.

Summary

- For $m_{H+} < m_t m_b$ can search for a charged Higgs produced in top decays.
- The LHC will produce tops at an unprecedented rate.
- •A kinematic fit gave better separation between signal and background events.
- A likelihood fit method was used to put expected upper limits on B(t -> H⁺b) at 95% confidence level.
- Can expect to improve on the current Tevatron limits with 200 pb⁻¹ data at 10 TeV.