## A Monte Carlo study of the $CC1\pi^0$ Selection at the T2K Near Detector

Tom Maryon, Lancaster University

- T2K
- Detectors
- $CC1\pi^0$  Monte Carlo studies in the Near Detector
- Early Monte Carlo based selection.

(First T2K Beam Neutrino Events seen)

(Left: ND280, Dec 09 Right: SK, Feb 10)





#### T2K – Aims and Motivation

#### - A bit of neutrino oscillation theory...



- Aim to measure  $\theta_{13} \Delta m_{23}^2$  and  $\theta_{23}$
- Study into whether  $\theta_{23}$  is maximal, needed to constrain mass models.
- $\theta_{13}$   $\rightarrow$  phase parameter ( $\delta$ )
  - Possible leptonic CP violation.
- T2K aims to investigate these by studying the possible oscillation  $v_{\mu} \rightarrow v_{e}$

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} \theta_{13} \sin^{2} 2 \theta_{23} \sin^{2} \left(\frac{1.27 \Delta m_{23}^{2} L}{E_{\nu}}\right)$$

### T2K – Experimental set up



Synchrotro

### T2K Near Detector - ND280



- 280m from the T2K graphite target.

- Understand flux and cross-sections close to beam neutrino source.

- Contained inside the refurbished UA1 Magnet.

- Two detection media,

- - Scintillator based – P0D, FGD, Ecals and SMRD.

- - Gas filled TPCs.

**UA1 Magnet Yoke Fine-Grain** Detectors Downstream P0D (π<sup>0</sup>-ECAL detector Solenoid Coil **Barrel ECAL** P0D **ECAL** 

Two neighbouring but separate detectors
 <u>P0D</u> - Specifically built to provide information on π<sub>0</sub> cross sections.

<u>Tracker</u> – FGDs, TPCs, Ecals - More general setup aims to profile other important cross sections.

### $CC1\pi$ – Interaction & Cross-sections 5

 $CC1\pi \rightarrow$  Neutrino interacts weakly through the exchange of a W Boson with a target nucleon to create one neutral pion and no other mesons.



E, (GeV)

# $CC1\pi^0$ – Motivation and Signal

#### **Motivation**

- Previously  $\pi^0$  production in this energy range is not well investigated.
- 'Known' vertex position,
  - $CC1\pi^0$  interactions provide known events to help in  $NC1\pi^0$ 
    - Major background at SK to resolve  $v_e$  interactions.
- Understood event  $\rightarrow$  help with tuning the energy scale of the detector for example.

#### <u>Signal</u>

- $\pi^0$  decay to  $2\gamma$  with a fraction =  $98.823 \pm 0.034$
- Target  $\rightarrow$  FGD
- The signal we are looking for -
  - 1 x Muon Track.
  - 2 x Photon Showers
  - Possible Proton/Neutron Track/Showers.



## $CC1\pi^0$ – MC Acceptance Study

- Acceptance study was made to examine the signal topology in the Tracker region of the ND280.

- Monte Carlo Events used;

- $CC1\pi^0$  Interactions only in FGDs
- 6428 Events Total (~  $4.5 \times 10^{20}$  POT, expect  $8.1 \times 10^{21}$  POT over 5 years)

#### **Muons**

- Muons tend to be highly boosted and often pass through the TPCs. This allows good momentum resolution



## $CC1\pi^0 - MC$ Acceptance Study

#### <u>Photons</u>

#### - Isotropic.

- Lower energy photon spectrum close to the reconstruction limit of Tracker ECals (50MeV).

- Many photons interact early outside ECal  $\rightarrow$  Poor  $\pi^0$  invariant mass reconstruction.





## $CC1\pi^0$ – Early Selection

#### Preliminary MC results...

- Acceptance study showed just 20% of  $CC1\pi^0$  interactions had both  $\gamma$ 's reach ECals.
- First look at a selection using these know events:

#### Cuts used

- 1. Reconstructed vertex within fiducial volume of either FGD.
- 2. One negative track leaving vertex.
- 3. Two reconstructed showers seen in the ECals, within 50ns of the initial vertex time.

| Cuts                           | Number of Events | Percentage of<br>Events |
|--------------------------------|------------------|-------------------------|
| True Vertex in FGD<br>Fiducial | 2903             | 100                     |
| Recon Vertex in FGD Fiducial   | 1509             | 52                      |
| Negative Track in TPC          | 932              | 32                      |
| 2 Ecal Showers in time         | 149              | 5                       |

## $CC1\pi^0$ – Pion Mass Reconstruction

Preliminary MC results...

Early <u>preliminary</u> first pass at pion mass reconstruction of Monte Carlo.

$$m_{\pi}^{2} = 2 E_{1}^{\gamma} E_{2}^{\gamma} (1 - \cos(\theta))$$

 $E_1^{\gamma}$  = Energy of the higher energy Photon  $E_2^{\gamma}$  = Energy of the lower energy Photon  $\theta$  = Opening angle of the two Photons



## **Conclusions and Future Work**

- Investigate backgrounds and purity using 'mock data' Monte Carlo.
- Use this to research new cuts to better selection.
- Improve reconstruction tools allowing for better vertexing and shower reconstruction.

- Aim to conclude the early stage of this study to allow processing of first data after summer shutdown.

#### Questions...

#### T2K – Sensitivity

 $\theta_{13}$ 

Current Limit -

 $\sin^2 2\theta_{13} < 0.13$  is the limit by CHOOZ for  $\Delta m_{32}^2 = 2.8 \times 10^{-3} \text{ eV}^2 (90\% \text{ CL.})$ 

T2K Limit Goal-

 $\sin^2 2\theta_{13} < 0.006 @ 90 CL$  $\Delta m_{32}^2 = 2.4 \times 10^{-3} eV^2 (90\% CL.)$ 

#### $\theta_{23}$ and $\Delta m_{23}^2$

Current Limit -

 $\sin^2 2\theta_{23} > 0.92 @ 90\% C.L. (SK)$  $|\Delta m_{23}^2| = 2.43 \pm 0.13 \times 10^{-3} eV^2$ (90% CL.(MINOS))



T2K Limit Goal -

 $\delta(\sin^2 2\theta_{23}) < 0.01$  $\delta(\Delta m_{23}^2) < 10^{-4} \text{ eV}^2 \text{ (a) 90\% CL.}$