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MINOS Detectors

Both detectors are functionally equivalent, in
order to reduce systematics.

Near Detector Far Detector
» At Fermilab, IL » At Soudan, MN
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» Neutrinos are provided by the “Neutrinos at the Main
Injector” (NuMl) beam at Fermilab

» 120 GeV protons are collided with a graphite target to produce
TTs and Ks, which decay to produce neutrinos (mainly vy, V)

» Two magnetic horns focus resultant particles of a specific charge-
sign, depending on the current direction:

-Neutrino parents are focused in
Forward Horn Current (FHC) mode

- Antineutrino parents are focused in
Reverse Horn Current (RHC) mode
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Antineutrinos

When running in neutrino mode, 7% of the beam is
‘contaminated’ with muon antineutrinos.

Challenges to an analysis of these include:

» Antineutrinos have cross-sections about
~|/3 compared to neutrinos

» Antineutrino parents that pass through the
horns in this configuration are on average
of a higher energy
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Motivation for measuring Antineutrinos

» We have the only large, underground sign-separating Neutrino
detector; and no next-generation detectors with similar
capabilities (event-by-event charge separation) are planned

» A possible explanation of LSND

- M.C. Gonzalez-Garcia et al., Phys. Rev. D 68 (2003) 053007
- The LSND experiment measured oscillations using antineutrinos
and found 0.2 eV? < Am? < 2 eVZ much larger than any other

measurement N S
- One explanation was that LSND’s measured © 68,90,99% C.L. (2 dof)

Am? was significantly different from Am?

- Constraints from other experiments have 10 |
made this less likely, but still viable if sterile
neutrinos are included.

» Limited antineutrino knowledge,
world Am? limits are 6 times
wider for antineutrinos than for

neutrinos. _/A’.,Strumia, F.Vissani, Nucl. Phys. B 726 (2005) 294-316
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Latest Antineutrino Results

» Have performed an analysis of antineutrino disappearance with
3.2x10%° Protons on Target (POT) in neutrino mode

» Because of low statistics, cannot approximate confidence limits
as gaussian in the presence of our physical boundaries

» Have used the Feldman-Cousins technique to determine the
correct confidence intervals
G. Feldman, R. Cousins Phys. Rev. D 57, 3873 - 3889 (1998)

» We can also account for systematics in a very natural way -
exactly on each event in the Monte-Carlo, rather than
approximating the effects on the spectrum




Feldman-Cousins Method

» With Gaussian statistics, we can draw a contour by
tracing round the likelihood surface at a prescribed (1 — «) (%) m=1 m=2
up-value (AX?) 68.27 1.00 230

90. 2.71 4.61
95. 3.84 5.99

C. Amsler et al. (Particle Data Group),
Physics Letters B667, 1 (2008)
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Feldman-Cousins Method
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Ay? values for sin?20 = 1, AmM’ = 2.5x107°

— T T T T T T
— Gaussian
— FC—distribution

To do this, we generate a large
number of real-statistics
experiments and fit each one
separately
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Experiments

» We can use the results of these
fits to create a distribution of
likelihood values
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» The integral of this distribution to
the required coverage gives you
the value at which to trace the
contour




Coverage Correction

» Each point the contour passes
through is corrected separately




Coverage Correction

» Each point the contour passes 400
through is corrected separately 200

» This image shows the grid of
AX? values that give 90% coverage
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» Once the likelihood surface is
generated, any points below the
corresponding place on this graph
are within 90%
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» This has the ultimate
effect of ‘pushing’ the
contour around

AT (107 eV?)

N B

» Confidence limits become
exact, not an approximation
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Results: Far detector Data

» Predicted events with CPT
conserving Oscillations: T

583+ 7.6 (stat) + 3.6 (S)’St.) MINOS Prel'm'nary —&— Far Detector Data :

— No Oscillations
— = —== CPT Conserving
_]' Systematic Error

—— Background (CPT) _

N
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» Predicted events for null
oscillations:

64.6 + 8.0 (stat) + 3.9 (syst.)
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- At high energy, where oscillation
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» Feldman-Cousins corrected
contour including systematics

» Best fit is at high value, due to i Mg\lgs r(;ze()ligci)n?ry
deficit at high energy e

» CPT conserving point from the ~ —~
MINOS neutrino analysis is within >
the 90% contour mq)

@
NI

» Null oscillation hypothesis
excluded at 99% '
- — 90%
» At maximal mixing exclude: - —99.7%
(5.0 < A2 < 81)x 103 eV2 0%, ;
=== 90% Global Fit

. | ----99.7% Global Fit, ..
» Dashed lines show global fit to C 4 MINOS Best Fit .

previous data, Super-Kamiokande NI RN BRI BNRTENE AR AL CETT

dominates (SK-I and SK-II) O 02 04 06 08 1

M. C. Gonzalez-Garcia & M. Maltoni, Phys. Rept. 460 (2008) Sl n2(26)




Future Analysis: Reversed Horn Current

» In October we started taking data
with the beam in antineutrino 200~ 7

mode
100¢
» Have accumulated 1.76x102° POT -

in this configuration

» Antineutrino spectrum is lower
energy, and dominant
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» First results this summer!
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Summary

» MINOS is a mature and flexible experiment that
has measured many facets of neutrino properties

» Presented data of the first direct observation of v,
in a long-baseline experiment

» The Feldman-cousins technique was used to
correctly calculate the confidence intervals

» Data from NuMI in antineutrino result will be
presented this summer
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Why are the spectra so different?
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Event Topologies

n,CC Event

Hadrons

long Y track+ hadronic short, with typical short event, often diffuse
activity at vertex EM shower profile




Selection: Backgrounds

= Large background:
= mis-identified v, events with
wrong track sign (8%)
= NC events faking a muon track
(50%)

= Additional selection cuts:
= Significance of charge sign
determination
= Relative angle (does the track
curve towards or away from the
magnetic coil hole relative to its
initial direction)
= Likelihood based on track length
and pulse height for CC/NC

separation

= Near Detector: 87% efficiency, 5%
contamination
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Selection Variables

— 1 1 1 1 I
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—— Data
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»Likelihood based CC/NC - 20
: teveloned f F 2.9x10% POT
separatlon (developed for "~ Low Energy Beam
previous analyses, removes :

— Near D r
both NC and mis-id'd CC) - Near Detecto 4

—e— Data

= MC w/ flux error

» Track fit charge significance - B MC background

»Relative angle (direction of the

, : abs(Relative Angle - )
track in the magnetic field)




Extrapolation
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* Near detector energy spectrum extrapolated to Far Detector,
using MC to provide energy smearing and correct for detector
acceptance




Sensitivity

» This plot shows the sensitivity
of our analysis

» This is the coverage contour

we would get in the ‘Average’

experiment | Monte Carlo

L 3.2x10°° POT:

90% Gaussian Errors
90% Statistics Only

» The contribution from the

Feldman-Cousins corrections
are shown = i
< 2/

90% Statistics+Systematics
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One parameter Fit at Maximal Mixing

Dataset doesn’t constrain mixing B L ALY S
L MINOS Preliminary: 3.2x10% POT
angle well. ~ sin%(28) = 1.0

Perform one parameter fit at
maximal mixing.

» MINOS excludes at maximal
mixing:
(5.0 < Am? < 81)x10-3 eV? (90% C.L)
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» Similarly at 30 C.L.:
(6.7 < Am? < 55)x10-3 eV2 (30 C.L)




Antineutrino 3.2E20 Cross-Checks

* The deficit is consistent with statistical fluctuations
* Extensive cross checks were performed
* An independent sample of rock muons was studied

- Sample about half the size of the fiducial sample

- Found a ~I sigma excess
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Statistical Context

» Compared to the CPT-
conserving oscillation
hypothesis we have a deficit @000k T T w
-

of 16.3 events S P(N<42) = 2.4% : P(N>75)
E4000 : =2.7%
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