Low-Mass Support Structures for Silicon Sensors

Ryan Page

IOP HEPP & APP 30 March 2010

Low-Mass

- Collaboration consisting of the Universities of Bristol, Glasgow, Liverpool and STFC RAL
- Study of silicon carbide foam's thermal and mechanical properties for use in future detectors
- Low-Mass has made in-roads into turning this technical ceramic foam into an engineering material by analysing:
 - Machining methods
 - Mechanical properties
 - Characterising of features
 - Module construction
 - All SiC foam vertex detector geometries
 - Thermo-mechanical analysis
 - Tracking performance
 - More realistic simulation of foam

Objectives of a Support Structure

- Ensure stability of sensor in the tracking environment
 - Rigidity of a single module $\propto E \times t^3$
- Minimise material to reduce multiple Coulomb scattering and delta ray production
 - 1. Reduce thickness of material
 - 2. Increase the radiation length

Silicon Carbide Foam

- SiC foam is a cellular structure that is isotropic and homogenous
- Foams can be characterised by 3 properties
 - 1. Pores per inch
 - 2. Relative density
 - 3. Base material
- Maximise Material indices while maintaing stability

Silicon Carbide Modules

- Survey Si surface with a laser micrometer flatness over whole modules of 100-200µm
- Flatness and straightness measured to within ±5µm

- The material budget of 8% SiC with thickness 1.5mm is 0.14%X₀
- Complete module of 3.2% 1.3mm is 0.079%X₀

Vertex Detector Geometries

Need novel design to allow Nested geometries favour thin sensors to overlap and keep active region on defined ladders allowing overlap between sensitive areas of radius sensor

Tracking Performance

• Use impact parameter resolution to compare performance

Impact Parameter Resolution as a Function of Pt

 Although not optimised for thick support staves still within 1-5% of ILC baseline over |cosθ|=0.96

More Realistic Model

- Currently Geant4 simulations model SiC foam as a continuous solid with material averaged over volume
- Given cellular structure particles have a probability of interacting with more material or less material
- To investigate this the number of ligaments traversed is poisson distributed and the resulting scattering distribution analysed
- For a single module most probable number of ligaments is 3

Validating Geant4 Models

Scattering Distributions

 Probability of moving through more material or less material than average leads to differences in distributions

• The difference in RMS for the different models at 5GeV is < 1%

Conclusions and Future Plans

- We have proven SiC foam can be used for construction of single modules
- From this we have enough understanding to build complete structures and test them
- The unoptimised impact parameter resolution is comparable to CFRP support structures that are mechanically unproven
- Scattering distributions are measurably different for low momentum tracks
- Models will be tested in test beam analysis
- Whether this would effect the tracking performance would then need to be investigated depending on the outcome
- Material should be seriously considered when designing a tracking system

