

ZZ Diboson Event Selection in ATLAS

Tom Barber, University of Cambridge IoP HEPP 2010

Overview

Introduction

- Motivation
- Channels of interest:
 - > ZZ→4I
 - ► $ZZ \rightarrow 2I2v$
- Lepton Pre-selection
 - Electron Preselection
 - Muon Preselection

Analysis Cut Selection and Yields at 10 TeV

- $\mathsf{ZZ} \rightarrow \mathsf{4I}$
- $\flat \ \mathsf{ZZ} \twoheadrightarrow \mathsf{II}_{\mathsf{VV}}$
- Overall selection efficiency
- Reweighting to 7 TeV
- Anomalous Coupling Outlook

Nature Vol 464, 25 March 2010

ZZ Diboson Production

Standard Model Production

SM Forbidden

- fixed by gauge invariance
- Search for Anomalous Triple Gauge Couplings
 - direct probe for new physics.
- Current ZZ diboson measurements
 - Observed at LEP2, just above threshold
 - hep-ex/0511027v2
 - Handful of events from the Tevatron
 - $ZZ \rightarrow 4I$ Events: 3 + 3 (D0 + CDF)
 - arXiv:0810.3443v1 [hep-ex]

Tom Barber, IoP HEPP Meeting 30/3/2010

Channels and Datasets

$ZZ \rightarrow 2e2\mu$

- Investigating selection efficiency of
 - > $ZZ \rightarrow 4I$ Channel:
 - very clean signal, background free
 - $ZZ \rightarrow 2I2v$ Channel:
 - higher background, but ~6 times higher cross section

ZZ→2e2v

- Using IOTeV simulated data samples
 - No longer a likely scenario...
 - Reweighting to estimate 7 TeV yields
 - Official 7 TeV currently in production

Electron Preselection

Two types of electrons defined here

- Physics Electrons
 - Used for Z formation
 - $\Box~pT$ > 5 GeV, | η | < 2.5
 - $\hfill\square$ Exclude region 1.37 < | η | < 1.52
 - Pass "Medium" criteria on track matches and calorimeter shower shapes
- Veto Electrons
 - Used to reject background, so looser cuts
 - $\Box pT > 5 \text{ GeV}, |eta| < 3.0$
 - Crack region included
 - □ "Loose" electron criteria
- Overlap removed between the two types

• Efficiency definition:

- Only consider truth electrons coming from a Z boson in the ZZ sample
- Efficiency = Number of true electrons matching a reconstructed electron / total number of true electrons

Muon Preselection

- Also define two types of muons:
- Combined Muons
 - Tracks in both Inner Detector and Muon systems
 - pT > 5 GeV, |η| < 2.5
 - \blacktriangleright Isolation: Et in ΔR < 0.4 / Et < 0.2
 - Muon-ID track match χ^2 /ndof < 15
 - Global Fit (Muon+ID) χ²/ndof < 15</p>
- Standalone Muons
 - Only require hits in muon chambers
 - ▶ pT > 5 GeV, | η | < 2.7
 - Isolation: Et in $\Delta R < 0.4$ / Et < 0.2
 - > Track Fit (Muon) χ^2 /ndof < 15
- Both types are used for Z formation

$ZZ \rightarrow 41$ Selection

- Main Backgrounds
 - Zbb and $Z \rightarrow II$ with fake leptons

Lepton Cuts

- Require 2 pairs of leptons to make Zs
- ▶ pT > 6 GeV

Z Invariant mass

- Order Zs by distance from the true Z mass
- For closest Z:
 - ▶ | m(Z) 91.2GeV | < 20 GeV
- For second Z (to keep Z*):
 - ▶ m(Z) > 20 GeV

$ZZ \rightarrow 41$ Yields @ 10 TeV

Cut	ZZ→4e	ZZ → 4m	ZZ→2e2m	Z(ee)bb	Z(mm)Bb	ZZ→IIbb	wz
n(Z) = 2	1.99	4.00	5.37	0.44	0.45	0.007	0.08
Lepton pT	1.99	3.87	5.28	0.34	0.20	0.006	0.08
Z1 mass	1.96	3.76	5.14	0.25	0.18	0.004	0.07
Z2 mass	1.90	3.51	4.87	0.07	0.05	0.003	0.07
Trigger	1.90	3.51	4.69	0.07	0.05	0.003	0.07

Expected number of events in I fb⁻¹

- Backgrounds are sum from all 3 subchannels
- High pT single lepton trigger applied
 - Typically ~99.9% efficient after all other cuts

Signal 10.1 / Background 0.14 ~74

$ZZ \rightarrow Ilvv$ Event Selection

Lepton Kinematics

- ► Lepton pT > 20 GeV (Reduces $Z \rightarrow II$)
- ▶ | m(ll) 91.2GeV | < 20 GeV
- Reduces non-resonant background
- ttbar,WW
- Missing Transverse Energy
 - Require Missing Et > 50 GeV
 - Also 0.65 < pT(Z) / MET < 1.35</p>
 - Reduces ttbar and WZ
- Lepton Veto
 - Require n(Muons + Electrons) = 2
 - Reduces WZ background
- Jet Veto
 - Using Anti-Kt jet finding algorithm
 - Veto events with jets with Pt > 30 Gev, |eta| < 3.0</p>
 - Reduces ttbar background
- Require a high pT Z
 - ▶ pT(Z) > 100 GeV
 - Reduces most backgrounds!

$ZZ \rightarrow llvv$ Yields @ 10 TeV

Cut Name	ZZ→eenn	ZZ→mmnn	z→II	ttbar	wz	ww
n(Z) = 1	58.17	76.08	9.15E+05	7.00E+03	249.45	1060.60
Lepton pT	49.54	63.63	8.10E+05	4.72E+03	211.14	731.26
n(Lepton) = 2	47.46	59.82	7.79E+05	3.95E+03	60.38	693.13
Z mass	47.17	59.31	7.45E+05	1.15E+03	49.95	202.26
MET	18.10	22.39	156.24	261.97	11.50	44.40
n(Jets) = 0	14.69	18.95	31.78	8.25	7.32	35.01
pT(Z)	4.66	5.15	1.62	0.73	1.28	0.57
Trigger	4.66	5.06	1.62	0.73	1.23	0.57

- Expected number of events in 1 fb-1
- More challenging channel than ZZ→4I Main backgrounds from Z→II and WZ

Signal 9.7 / Background 3.9 = 2.5

Z Selection Efficiency

- True Z pT spectrum for both channels, before & after cuts
- Selection efficiency = true Z(pT) of events passing all cuts / true Z(pT) vs pT
 - Use this to produce toy MC for Anomalous coupling studies

Reweighting To 7 TeV

- ATLAS has potential collect Ifb⁻¹ at 7 TeV in next 2 years
- As a first estimate, can reweight 10 TeV events
 - Take generator level-PDF information to reweight to 7 TeV
- Good agreement between 7 TeV and Reweighted 10 TeV
 - Reweighted $10 \text{ TeV} \rightarrow 7 \text{ TeV} = 33.24 \text{ fb}$ (cf 53.37 fb before reweight)
 - Cross Section @ 7 TeV = 33.23 fb

Comparison of Energies

Energy / TeV	7	10	14
ZZ-> 4e	1.29	1.90	3.17
ZZ -> 4mu	2.36	3.51	7.56
ZZ -> 2e2mu	3.16	4.69	5.72
Total	6.80	10.10	16.45
Background	0.08	0.14	2.00
S / B	84.7	73.9	8.3
S / √B	24.0	27.0	5.7

Energy / TeV	7	10	14
ZZ->2e2nu	2.76	4.66	3.51
ZZ->2mu2nu	2.87	5.06	6.66
Total	5.62	9.72	10.17
Background	2.34	4.23	5.00
S / B	2.4	2.3	2.0
S / √B	3.7	4.7	4.5

Numbers are predicted yields with Ifb⁻¹ at 7,10,14 TeV

- I4 TeV numbers are from CERN-OPEN-2008-020
 - Some differences in cuts applied
- 7 and 10 TeV are using exactly the same cuts
- By the end of my PhD (October)
 - Optimistically 100 pb⁻¹ of 7 TeV
 - Perhaps a single real diboson event!

12 Events in 1 fb⁻¹ @ 7 TeV

Anomalous Couplings Limits

Z Pt Spectrum

- Production of on-shell ZZ probes ZZZ and ZZy anomalous couplings: f_4^Z , f_5^Z , f_4^γ , f_5^γ
 - Cross section is quadratic in the couplings
- Aim to place limits on the coupling strength in ATLAS
 - Specialist Generators (Baur/Rainwater, Sherpa)
 - Re-shape spectrum with ATLAS detector response
 - Fit shape of Z transverse momentum spectrum
 - Obtain 95% confidence limits using log likelihood ratio
- Work ongoing to estimate sensitivity after Ifb⁻¹ at 7 TeV

Conclusions and Next steps

- ZZ selection at 10 TeV with 7 TeV Reweighting
 - ► $ZZ \rightarrow 4I$ channel
 - 4 high pT leptons
 - ► $ZZ \rightarrow 2I2I_V$
 - 2 high pT leptons with missing transverse energy
 - Good prospects for measuring ZZ with 1 fb⁻¹
 - ▶ ~7 ZZ → 4l events
 - ▶ ~6 ZZ \rightarrow 2l2 ν , with ~2 background
- Anomalous Coupling Limits
 - Obtained by fitting Z kinematic spectrum
 - Watch this space!

The

Backup Slides

Tom Barber, IoP HEPP Meeting 30/3/2010

Basic Trigger Analysis

	Electrons	Muons
LI	EM18	MUI0
L2	em20	mu10
EF	em20	mu10

- Trigger applied after all other offline cuts
 - Trigger type is matched to leptons in channel
 - ▶ In the case of $ZZ \rightarrow 2e2mu$, require both electron and muon triggers
- Require all three levels to pass
- Efficiency after offline selection is very high:
 - Typically ~ 99.9%