

Isolation Energy Study in $t\bar{t}$ and $Z \rightarrow e^+e^$ in the ATLAS detector

A. James Poll Queen Mary University of London

On behalf of the ATLAS collaboration

Motivation

- .چ. The Top quark is the heaviest elementary particle known and its mass along with that of the W constrain the mass of the Higgs.
- .چ. The single lepton channel ("Golden Channel") strikes a balance between high statistics and good signal to background.
- t t events will contain one and only one electron from the • 🛃 • decay of the W 15% of the time.
- .چ. It's important to ensure the tagging of "true" electrons from the W and not fakes caused by lets or other sources.
- .چ. An isolation requirement on the electron is a very effective method of distinguishing between electrons and fakes in not only the signal event, but also in backgrounds such as QCD.
- .ج. We thought we could improve on what the Top group within ATLAS recommended.

- E_{T_cone} = Total E_T in 0.2 cone around centroid EM Cluster E_T (i.e. 5x5 of EM layers only around centroid).
- Top Group recommendation was to use $E_{T_{cone}} < 6$ GeV.

We investigated the use of the following rejections:

$$I_R = \frac{E_{T_cone}}{E_T} \quad \& \quad E_{T_cone} < C_1 + C_2 \cdot E_T$$

Electron Object

- Medium Electron Shower shape cuts in calorimeter and inner detecter track matching.
- Electron $E_T > 20$ GeV.
- |eta| < 2.5 and fiducial crack region (1.37< |eta| < 1.52) objects vetoed.

Datasets

• I0 TeV McAtNlo $t \overline{t}$ Monte Carlo with one forced $t o W o \ell
u$

2 Million events (~6800 pb⁻¹)
2 Million events (~1820 pb⁻¹)

• 10 TeV Pythia Monte Carlo $Z \rightarrow e^+ e^-$

Selected electrons+Truth Matched

- The average E_{T_cone} increases with E_{T} , likely as a result of bremsstrahlung.
- For $E_T \rightarrow 0$ the E_{T_cone} tends to ~1 GeV This may be caused by either calorimeter noise, or incorrect energy subtraction in E_{T_cone} .
- The E_{T_cone} <6 GeV requirement will severely impact the efficiency at high E_T values.

*Error bars are the RMS

ET_cone slices

ET_cone <6 GeV Efficiency

An alternative method to recover efficiency at high E_T is to use the isolation ratio:

*Error bars are the RMS

I_R Efficiency

Choosing a cut

The optimal choice is actually a sliding cut of the form:

 $E_T Cone < C_1 + C_2 \cdot E_T$

E.g., we take: $C_1 = 4 \text{ GeV}$ $C_2 = 0.023$

Efficiency of different isolation cuts [%]									
	$t\overline{t}$	$Z \to e^+ e^-$							
E_{T_cone} < 6 GeV	97.06 ± 0.03	99.30 ± 0.01							
I _R < 0.1 GeV	94.79 ± 0.04	95.41 ± 0.01							
I _R < 0.12 GeV	96.70 ± 0.03	97.42 ± 0.01							
E_{T_cone} < 4 + 0.023 • E _T	96.78 ± 0.03	99.39 ± 0.01							

A flat efficiency is maintained across the whole E_T region.

Tuesday, 30 March 2010

 Studies within ATLAS have shown using this cut improves background/fake rejection in the region of 30% over a simple cut on E_{T} cone, whilst still maintaining the same signal efficiency.

Cut	Single Top	ZZ	wz	ww	$ t\bar{t}$	Wbb +Jets	W+jets	Zbb+jets	Z+jets	QCD
E _{T_Cone} < 4 + 0.023 • E _T	545	2.1	45	163	2065	104	17268	32.2	422 (1583
E _{T_Cone} < 6 GeV	546	2.1	45	162 (2073	104	17228	31.7	414 (2208

Event yields normalised to 10pb⁻¹ at 10 TeV

- ET_cone has a linear dependence on the ET of the electron, for electrons from W or Z decays.
- An isolation cut must take this dependence into account in order to avoid a significant efficiency drop with E_T.
- We proposed a sliding cut as a linear function of E_T at the end of 2009, as of Feb 2010 the sliding cut is an official ATLAS top group recommendation cut on electrons.
- A sliding E_{T_cone} cut has be shown to better at removing fake electrons in QCD background events while at the same time preserving the efficiency in tagging real electrons from W decay.

• For atlas people see ATL-COM-PHYS-2009-605 for plots and discussion

