Introduction	Anisotropy	Fake maps	Results

The question of anisotropy in high-energy cosmic rays

S.R. Gozzini, M. Ave, J. Hinton & J. Knapp

Universities of Leeds, Leicester & München

March 30th, 2010

GZK effect limits the horizon of protons that can reach the earth: if there are sources, the visible ones are within a volume of about 100 Mpc radius... objects within this distance are anisotropic

cumulative chance probability that k or more events correlate

$$P = \sum_{j=k}^{N} \begin{pmatrix} N \\ j \end{pmatrix} p_{iso}^{j} (1 - p_{iso})^{N-j} \quad p_{data} = \frac{k}{N} \quad p_{iso} = \frac{1}{4\pi} \bigcup_{i=1}^{N} S_{i}$$

€ 990

Fake maps

we want to question whether it is possible to obtain a map of fake Auger events from a catalogue, with a simulation of

- the initial spectral shape of each source
- ② the energy loss of protons, travelling from a given distance
- It the detector properties (exposure, energy resolution)
- the coordinate offset due to magnetic effects

perform analysis of fake data: do we see correlation? do we see the real source?

1 2	source: parameterised with slope, E_{max} propagation: reproduced stochastically with a Montecarlo code	
0	• photo-pion production due GZK effect $p + \gamma \rightarrow \Delta^+ \rightarrow p + \pi^0$ • pair production $p + \gamma \rightarrow p + e^+ + e^-$ • cosmological cooling factor due to universe expansion spectra at ground: obtained folding the two previous steps, as a function of the distance traveled	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	C

Fake maps

Results

Result 1 - fake data from individual sources 11 brightest sources in Swift-BAT catalogue of AGNs

900

Result 2 - fake data from catalogue

- Choose catalogue: here (1) Swift-BAT, (2) HIPASS
- **2** Input source parameters: δ, x
- Input analysis parameters: E_G, z
- Smear energy according to resolution
- Smear coordinates to reproduce magnetic deflections
 - galactic
 - extragalactic
 - measurement error (angular resolution)

Fake maps

Results

skymap of fake events generated from Swift-BAT,

stars = Swift-BAT AGNs, blue stars = actual contributing sources, circles = fake events

look for minimum chance \mathcal{P} in the space of z, angular window

same for the real Auger data at the time of publication

look for minimum chance \mathcal{P} in the space of z, energy

<ロト < 国ト < 国ト < 国ト < 国ト = 三 の < ○</p>

alternative catalogues - HIPASS

HI galaxies, weighted by amount of hydrogen (\propto star formation rate)

look for minimum chance \mathcal{P} in the space of z, angular window

Swift-BAT

- quite strong clustering strength (supergalactic plane)
- possibly well-motivated, no deficit of sources on the galactic plane

HIPASS

- higher multiplicity, sparse sources
- other candidate sources (GRBs)

some values of binomial probabilities when correlated with another catalogue (Véron-Cetty)

k/N	р	Р	
17/44	0.21	$4.7 \cdot 10^{-3}$	data
19/39	0.21	$8.4 \cdot 10^{-5}$	fake Swift
34/60	0.21	$1 \cdot 10^{-9}$	fake Swift
29/59	0.21	$9.7 \cdot 10^{-7}$	fake HIPASS

summary of the simulation chain

- 'good guess' for starting spectral shape
- stochastic proton propagation
- detector resolution
- RA, DEC smearing
- intensity of each source
- declination of each source

what we do not account for

- chemical composition: all protons
- differences between sources: our spectra are universal
- does it make sense to weight on intensity of each source? i.e. is the cosmic ray flux proportional to the X-ray flux?

Conclusions

about the search for possible sources of cosmic rays

- cosmic rays at the highest energies are expected to be anisotropic if there is a GZK horizon
- disappointingly, the significance of the correlation of the Auger data with the Véron-Cetty catalogue decreases with time
- we are optimising a simulation chain to produce fake maps; results are promising, we can tune analyses on mock data
- some future work is needed to implement photo-disintegration, propagation, deflections of heavy elements, improve description of magnetic fields, ...