GAMMA-RAY ASTRONOMY AT THE HIGHEST ENERGIES WITH CTA

RICHARD WHITE For the UK CTA Groups IOP, UCL, MARCH 2010

THE CHERENKOV TELESCOPE ARRAY

CTA GOAL SENSITIVITY

RICHARD WHITE

THE PROBLEM AT HIGH ENERGIES

Collecting Cherenkov Light

RICHARD WHITE

TELESCOPE SPACING

- Cherenkov light useful out to >600 m at few TeV
- Greater spacing requires larger reflectors.

FIELD OF VIEW

- Cherenkov light useful out to >600 m at few TeV
- Greater spacing requires larger reflectors.
- Greater spacing requires larger field of view:
 - 3 5° at 100 m (current)
 - 7 8° at 200 m
 - 10 11° at 600 m

The Opportunity at High Energies

- Angular Resolution!
- O High precision only achievable > TeV:
 - Limit: few " at 30 TeV
 - 1' is achievable at 100 TeV with modest collection area.
 - x 5 improvement from HESS

The Opportunity at High Energies

- Angular Resolution!
- High precision only achievable > TeV:
 - Limit: few " at 30 TeV
 - 1' is achievable at 100 TeV with modest collection area.
 - x 5 improvement from HESS
- Angular Res. improves with multiplicity:
 - At 1 TeV ~16 telescopes.
 - > 1 TeV a very high multiplicity is needed for high angular resolution

WHAT ARE WE LOOKING FOR?

What are we Looking For?

RICHARD WHITE

11

WHAT ARE WE LOOKING FOR?

Richard White

GALACTIC PEVATRONS

⊙ Cosmic-Ray spectrum is smooth until ~3 PeV

- Galactic origin at least this far
- SNR are a good candidate...

MORPHOLOGY: 1990s

- \odot 4 shell-like objects detected in TeV.
- Young historical SNRs:
 - RX J1713.7-3946
 - Vela Junior
 - RCW 86
 - SN 1006
- \odot Point-source emission from Cas A.
- All resolved shells show correlation with X-Ray emission.
- \odot Electron acceleration to > 100 TeV

\odot B-Field Amplification in SNR

- Evidence:
 - X-Ray Filaments
 - X-Ray Variability
- Implies CR Pressure is significant
- <10% radius B-Field structure expected.
- ⊙ TeV Morphology provides:
 - Differentiate between leptonic and hadronic acceleration
 - Test theory of magnetic field amplification in CR modified shocks.

Reproduced from Uchiyama et al., 2007

• B-Field Amplification in SNR

- Evidence:
 - X-Ray Filaments
 - X-Ray Variability
- Implies CR Pressure is significant
- <10% radius B-Field structure expected.

• TeV Morphology provides:

- Differentiate between leptonic and hadronic acceleration
- Test theory of magnetic field amplification in CR modified shocks.

WHAT ELSE:

RICHARD WHITE

Conclusions

- CTA will provide unprecedented sensitivity across a wide energy range.
- ⊙ 3 300 TeV sensitivity is critical to address major questions in astroparticle physics.
- Excellent angular resolution (the best possible anywhere above ~100 keV) is possible and required.