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Introduction

QED Lagrangian:

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνFµν

Gives rise to a perturbative series in αEM ' 1/137.

The terms are Feynman diagrams:

The broad question is: Is this a perturbative expansion of a
differential equation?
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State space as a function space

The Dirac equation in free space

∂tψ(t, x) = (−αj∂j − iβm)ψ(t, x)

is a well-posed Cauchy problem: initial data ψ(0, x) uniquely fixes a
solution. Easy to see in Fourier space:

ψ̃(t, k) = exp(−iH(k)t) ψ̃(0, k)

where H(k) = (αjkj + βm) is Hermitian at each k ∈ R3. Multiplication in
k-space means convolution in real space:

ψ(t, x) =

∫
d3x ′ S(t, x − x ′)ψ(0, x ′)
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State space as a function space

ψ̃(t, k) = exp(−iH(k)t) ψ̃(0, k)

Solution ψ is uniquely constrained by initial conditions.

Solution exists for all initial conditions ψ(0, ·) ∈ L2(R3,C4).

Evolution in time ψ(0, ·)→ ψ(t, ·) is a unitary transformation on
L2(R3,C4).

Punchline: “state” ↔ initial data on a given spacelike hypersurface.

Λ1 = state space for a single particle

= space of initial data for Dirac eq.

= the function space L2(R3,C4)

= the one-particle configuration space.
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Photon sector

Equation of motion (Maxwell eqs) (’Pryce representation’)

∂

∂t
f = −iHf

where f = E + iB and H = ∇×. [Pryce48, Good57, Hawton99, Raymer05, Smith06].

Single-photon state space Θ1 = L2(R3,C3).

Standard norm on Θ1 is ∝ classical e.m. energy.

〈f , f 〉 =

∫
d3x f †(x)f (x) =

∫
d3x |E(x)|2 + |B(x)|2

H is Hermitian with respect to this norm.
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Second quantization

Two particles: amplitudes f (x), g(x). The tensor product f ⊗ g is the
function of pairs of space coordinates

(f ⊗ g)(x1, x2) = f (x1)g(x2), f , g ∈ Λ1.

The square magnitude

|(f ⊗ g)(x1, x2)|2 = |f (x1)|2|g(x2)|2,

gives a conditional probability for the locations of each particle.

Need a vector space: (f ⊗ g + f ′ ⊗ g ′) can generally not be written as
f ′′ ⊗ g ′′. (Such states are called entangled.)

Theorem: L2(R3)⊗ L2(R3) = L2(R3 × R3). A general two-particle
state is a function h(x1, x2).
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Statistics and tensor algebra

Wedge product: antisymmetrised tensor product. e.g. Two
single-particle states f ∧ g = 1

2 (f ⊗ g − g ⊗ f ).

Fermions: exterior algebra. Bosons: symmetric algebra.

Λp = Alt(Λ1 ⊗ . . .⊗ Λ1︸ ︷︷ ︸
p

), f ∧ g = Alt(f ⊗ g)

Θp = Sym(Θ1 ⊗ . . .⊗Θ1︸ ︷︷ ︸
p

), f � g = Sym(f ⊗ g)

State space: orthogonal sum of p-particle state spaces

Λ = Λ0 + Λ1 + Λ2 + . . .

Θ = Θ0 + Θ1 + Θ2 + . . .

Typical element is f = (f (0), f (1), f (2), . . .) where each f (p) is a
p-particle configuration amplitude.
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Relativistic covariance

Intrinsic (no t dependence) representation of Poincaré algebra on Λ1:

Pj = ∂j

Jj = −εjklxk∂l + Jj

P0 = −iH = −αk∂k − iβm

Kj = xjP0 + Kj = −xjαk∂k − ixjβm + Kj

where

Jj =
−1

2

(
iσj 0
0 iσj

)
, Kj =

1

2

(
σj 0
0 −σj

)
Unitary rep on Λ1 extends multiplicatively to higher tensor powers Λp.
(= Operators on p-particle amplitudes ψ(x1, . . . , xp).)

Tensor-algebraic implementation of second quantization is relativistic.
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Dynamics on Λ

Notation: p-particle Hamiltonian

∂

∂t
(f1 ∧ f2) = (−iHf1) ∧ f2 + f1 ∧ (−iHf2)

≡ −iH (f1 ∧ f2) .

In general, simply write

∂

∂t
F = −iHF F ∈ Λ
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Steps towards Electrodynamics

Couple multi-photon states to a classical current j ∈ Θ1. (e.g. Dirac
jk = ψ†αkψ.)

∂

∂t
F = −iHF + j � F (1)

with j ∈ Θ1 a classical current.

Classical limit: coherent states (Glauber 1963)

F = Coh f =
∞∑

p=0

1

p!
f � . . .� f︸ ︷︷ ︸

p copies

(f ∈ Θ1)

satisfy (1) if f satisfies classical Maxwell eqs.

∂f

∂t
= −iHf + j
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Perturbative solution

Equation of motion:

∂

∂t
F = −iHF + j � F

= −iHfreeF +−iHintF

Solution by time-ordered exponential:

F (t) = e−itHfreeF (0)

+−i

∫ t

0
dt ′ e−i(t−t′)HfreeHinte

−it′HfreeF (0)

+ (−i)2

∫ t

0
dt ′
∫ t′

0
dt ′′ e−i(t−t′)HfreeHinte

−i(t−t′′)HfreeHinte
−it′′HfreeF (0)

+ · · ·
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Perturbative solution

Perturbative series:

+ + + . . .

Positive-energy projection recovers infinite series of Feynman
diagrams.

Equality of perturbative solution of differential equation with
perturbative series of Feynman diagrams.
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Negative energy problem.

Dirac Hamiltonian:

H(k) = αjkj + βm

and H2 = E 2 = k2 + m2. Orthogonal eigenspaces with eigenvalues
±E .

(electron)⊗ (positron) may have eigenvalue 0.

Possibility of cascade to infinitely many electron-positron pairs!

Response: Had no problem in the photon sector. H = ∇× also has ±E
eigenvalues.

Perturbative solution demonstrates that p-particle component F (p)

cannot diverge in finite time (factorially suppressed at large p).
[Houseman in prep]
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Steps towards Electrodynamics

Dynamics presented above only increase particle-number.

F 7→ j � F is not Hermitian: the equation of motion will break
unitarity.

Try including the Hermitian conjugate F 7→ jcF

∂

∂t
F = −iHF + j � F − jcF .

Second order perturbative contribution includes loop-like term.

Current due to two-lepton state ψ(x1, x2) can describe e+e−

annihilation.
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Perturbative expansions of differential equations

Can perturbative expansions of differential equations generate
factorially-growing complexity? Yes, even as ODE: Lindstedt
algorithm for classical 3-body problem [Siegel43,Gallavotti07]. Relationship to
multiscale analysis, renormalization.

Remark: SU(n) gauge symmetry consistent with L2-norm.

David Houseman (UCL) Differential field theory IOP HEPP/APP, Mar 2010 15



Conclusion

Concrete characterisation of state space.

ψ = (ψ(0), ψ(1), ψ(2), . . . , ψ(p), . . .) ∈ Λ

States are superpositions of configuration space amplitudes.

ψ
(p)
i1i2...ip

(t; x1, x2, . . . , xp)

Looking for modifications to free equations of motion, consistent with
underlying tensor structure, that may generate field theory
perturbatively.
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Extras
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Current due to multiple leptons

Current due to one lepton ψ(x):

jk(x) = ψ†(x)αkψ(x).

Current due to two leptons ψ(2)(x1, x2):

jk(x) = Trαj

∫
ψ(2)(x , x ′)ψ(2)(x , x ′)†d3x ′ + Tr Cαjψ(2)(x , x)ψ(0)†

where C =

(
0 ε
−ε 0

)
(= charge conj. matrix).

Special case: two spatially-separated lepton states: ψ(2) = φ ∧ χ.

jk(x) = φ†αkφ+ χ†αkχ.
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Current due to multiple leptons

jk(x) = Trαj

∫
ψ(2)(x , x ′)ψ(2)(x , x ′)†d3x ′ + Tr Cαjψ(2)(x , x)ψ(0)†

Second term couples a two-lepton state to the vacuum.

Vanishes if ψ(2) represents e−e− or e+e+. Non-zero only for e+e−

First-order perturbation may give rise to e+e− → γ. (Check: needs to
vanish on-shell.)

Second-order perturbation may give rise to e+e− → 2γ. (Need to
specify dynamics on lepton sector [Ruijsenaars77,Marecki04]). Will it give loop
diagrams?
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Anticommutation relations

These tensor algebras carry a natural representation of the
commutation relations, independent of choice of dynamics.

Creation operator / exterior product:

a†g h = g ∧ h

Annihilation operator / interior product: Define as Hermitian adjoint

of a†g , that is the unique operator ag for which

〈f , ag h〉 = 〈a†g f , h〉 for all f , h ∈ Λ

Notation: [Sternberg64]

ag h = gch
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Anticommutation relations

Let f , g ∈ Λ1.

1. {a†f , a
†
g} = 0

Let h ∈ Λ. e.g. [Sternberg64]

f ∧ g ∧ h = −g ∧ f ∧ h

a†f a†g h = −a†g a†f h

2. {af , ag} = 0

Similarly

f c(gch) = −gc(f ch)

af ag h = −ag af h.
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Anticommutation relations

Let f , g ∈ Λ1.

3. {af , a
†
g} = 〈f , g〉

Let h ∈ Λ.

f c(g ∧ h) = (f cg) ∧ h − g ∧ (f ch)

af a†g h = 〈f , g〉h − a†g af h

Compare with

{ax , a
†
x ′} = δ3(x − x ′)

corresponding to the limits f → δ3(x ′) and g → δ3(x).
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Relativistic covariance

p-particle state ψ ∈ Λp: space representation

ψ(t; x1, . . . , xp).

Treats t on a different footing to x. Doesn’t that break relativity?
[e.g. Chen10, Haller60]

No, definitely not in the free theory and we’ll discuss why.
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Poincaré algebra

Poincare group generates symmetry transformations corresponding to
relativistic covariance of a theory. Generators:

{P0,P1,P2,P3︸ ︷︷ ︸
translation

, J1, J2, J3︸ ︷︷ ︸
space rotation

, K1,K2,K3︸ ︷︷ ︸
Lorentz boost

}

Lie algebra (specify commutator [·, ·]):

[·, ·] P0 Pj Jj Kj

P0 0 0 0 Pj

Pi 0 0 εijkPk δijP0

Ji 0 εijkPk εijkJk εijkKk

Ki −Pj −δijP0 εijkKk −εijkJk [Foldy56].
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Relativistic covariance of Fock space

Intrinsic representation of Poincaré algebra on Λ1 (no t dependence):

Pj = ∂j

Jj = −εjklxk∂l + Jj

P0 = −iH = −αk∂k − iβm

Kj = xjP0 + Kj = −xjαk∂k − ixjβm + Kj

where

Jj =
−1

2

(
iσj 0
0 iσj

)
, Kj =

1

2

(
σj 0
0 −σj

)
Differs from [Foldy56, Chakrabarti66, Bialynicki-Birula87, Hawton01].
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Poincaré algebra

Example:

[Pi ,Kj ] = [∂i , xjP0 + Kj ]

= [∂i , xjP0]

= [∂i , xj ]P0

= δijP0

as required.
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Relativistic covariance of Fock space

P0 integrates to finite translation forward in time,

d

dt
ψ = P0ψ = −iHψ

Kj integrates to finite Lorentz boost (= change of inertial frame).

d

dη
ψ = Kjψ

∂

∂η
ψ(x) = (−xjαk∂k − ixjβm + Kj)ψ(x)

ψ 7→ eηKjψ is also a unitary transformation. [e.g. Houseman, in prep]
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Relativistic covariance of Fock space

Translation in time on Λ1...

f 7→ e−itH f

... and on products

f1 ∧ f2 7→ (e−itH f1) ∧ (e−itH f2)

with linear extension to Λ2.

Similarly for boosts or any other Poincaré transformation.

Punchline: Poincaré rep on Λ1 extends to Poincaré rep on Λp. Therefore,
tensor-algebraic implementation of second quantization is consistent with
special relativity.
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Energy in the classical limit

Departure from unitarity?

d

dt
〈F ,F 〉 = 2 Re〈j � F ,F 〉

= 2 Re〈F , jcF 〉

d

dt
1
2 log F ,F = Re〈j , f 〉

=

∫
d3x j(x) · E(x)
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Energy in the classical limit

〈F ,F 〉 = 〈Coh f ,Coh f 〉

=
∞∑

p=0

1

(p!)2
〈f � . . .� f︸ ︷︷ ︸

p

, f � . . .� f︸ ︷︷ ︸
p

〉

=
∞∑

p=0

1

(p!)2
p!〈f , f 〉p

= e〈f ,f 〉

Therefore, when F is a coherent state,

Classical energy = 1
2 log〈F ,F 〉
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Projection operators

Dirac Hamiltonian:

H(k) = αjkj + βm

and H2 = E 2 = k2 + m2. Orthogonal eigenspaces with eigenvalues ±E .
Projection operators:

ψ̃(k) 7→ P̃±kψ̃(k), P̃±(k) =
±H(k) + E

2E

project onto ± energy subspaces. Multiplication in k-space means
convolution in real space:

(P±ψ)(t, x) =

∫
d3x ′ P±(t, x − x ′)ψ(0, x ′)
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Example Hamiltonian [Haller60]:

Hfree =
∑
k

a†kakωk

Hint =
∑
k

(a†k + ak)Vk

David Houseman (UCL) Differential field theory IOP HEPP/APP, Mar 2010 33



Figure: A contribution to the electron self energy.

M̃(p) =

∫
d4q

(2π)4
(−ieγµ)

/p + /q −m

(p + q)2 −m2 + iε
(−ieγν)

gµν
q2 + iε

=

∫
d4q

(2π)4
(−ie)2 γµ S̃F (p + q) γµ D̃F (q)
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