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Introduction

QED Lagrangian:

L =P(iy"D,, — m)yp — %FH,,FW

Gives rise to a perturbative series in agy ~ 1/137.

@ The terms are Feynman diagrams:

/J\/J\O\/\/\/

The broad question is: Is this a perturbative expansion of a
differential equation?
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State space as a function space

The Dirac equation in free space

Orh(t, x) = (—o/é)j — iBm)y(t, x)

is a well-posed Cauchy problem: initial data (0, x) uniquely fixes a
solution. Easy to see in Fourier space:

QZ(L k) = exp(—iH(k)t) QZ(O, k)

where H(k) = (¢/k; + Bm) is Hermitian at each k € R3. Multiplication in
k-space means convolution in real space:

P(t,x) = /d3x' S(t,x — x")(0,x")
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State space as a function space

W(t, k) = exp(—iH(k)t) (0, k)

@ Solution v is uniquely constrained by initial conditions.
@ Solution exists for all initial conditions (0, -) € L2(R3,C*).

e Evolution in time ¢(0,-) — 4(t,-) is a unitary transformation on
L2(R3,C*).

Punchline: “state” « initial data on a given spacelike hypersurface.

Al = state space for a single particle
= space of initial data for Dirac eq.
= the function space [(R3,C*)

= the one-particle configuration space.
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Photon sector

e Equation of motion (Maxwell eqs) (pryce representation’)

o
9= _iHf
ot :

Where f = E =+ IB and H = VX . [Pryce48, Good57, Hawton99, Raymer05, Smith06].
e Single-photon state space ©! = [2(R3,C3).

e Standard norm on ©! is o classical e.m. energy.

(F.f) = / P F1(x)F(x) = / d3x [E()P + B(x)?

H is Hermitian with respect to this norm.
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Second quantization

@ Two particles: amplitudes f(x), g(x). The tensor product f ® g is the
function of pairs of space coordinates

(f ® g)(x1,x2) = f(x1)g(x2), f.g e

The square magnitude

(f @ g)(x1, %) = [ (x1)Plg ()|,

gives a conditional probability for the locations of each particle.

@ Need a vector space: (f @ g+ ' ® g’) can generally not be written as
" @ g". (Such states are called entangled.)

o Theorem: [%(R3) ® L2(R3) = L?(R3 x R3). A general two-particle
state is a function h(xy, x2).
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Statistics and tensor algebra

@ Wedge product: antisymmetrised tensor product. e.g. Two
single-particle states f A g = %(f ®Rg—g®f).

@ Fermions: exterior algebra. Bosons: symmetric algebra.

AP =AM @ ... A f = Alt(f
Ne...0N), Ng (fog)
p
OF =Sym(@'®...® 0", fog=Sym(f®g)
e
P

@ State space: orthogonal sum of p-particle state spaces

A=A+ AL A2
o=0+0e'+e%+...
Typical element is f = (O f(1) £(2) ) where each f(P) is a
p-particle configuration amplitude.
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Relativistic covariance

e Intrinsic (no t dependence) representation of Poincaré algebra on Al:

Pj=9;

Jj = —€juxi0) + J;

Po = —iH = —adx — iBm

Kj = xPo+ Kj = —xjoud — ixjim + K;

=1 /io; O (o O
Gr= 2 <0 iaj>7 KJ2<0 —UJ')

@ Unitary rep on Al extends multiplicatively to higher tensor powers AP.
(= Operators on p-particle amplitudes ¢(xi, ..., Xp).)

where

@ Tensor-algebraic implementation of second quantization is relativistic.
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Dynamics on A

@ Notation: p-particle Hamiltonian

% (fl A f-2) = (—IHfl) AN+ f A (—IHfz)
=—iH(AhAfR).
@ In general, simply write
gF = —iHF FeA
ot
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Steps towards Electrodynamics

o Couple multi-photon states to a classical current j € ©!. (e.g. Dirac

j=9laky.)

0
—F=—iHF+j0OF
Er I +J©

with j € ©! a classical current.

@ Classical limit: coherent states (Giauber 1963)

[e.9]

1
F=Cohf=> —fo..0f (f c©h
p!_,_/
p=0 p copies

satisfy (1) if f satisfies classical Maxwell egs.

of
— = —jHf +§
T IHf 4+
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Perturbative solution
Equation of motion:

0
—F=—iHF+j0OF
ot IHF + 5 ©
= _inreeF + _iHintF
Solution by time-ordered exponential:
F(t) = e~ ™h=F(0)

t
+ —I/ dt/ ef’(tft/)HfreeHinte*’t/Hfree F(O)
0

t t/
+ (—I)2 / dt/ / dt” ef’(tft/)Hfree Hinte*’(tft”)Hfree Hinte*’t//Hfree F(O)
0 0
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Perturbative solution

@ Perturbative series:

+ + + +...

@ Positive-energy projection recovers infinite series of Feynman
diagrams.

o Equality of perturbative solution of differential equation with
perturbative series of Feynman diagrams.
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Negative energy problem.

@ Dirac Hamiltonian:
H(k) = ok + Bm
and H? = E?2 = k? + m?. Orthogonal eigenspaces with eigenvalues
+E.

o (electron) ® (positron) may have eigenvalue 0.

@ Possibility of cascade to infinitely many electron-positron pairs!

Response: Had no problem in the photon sector. H =V x also has £E
eigenvalues.

@ Perturbative solution demonstrates that p-particle component F(P)
cannot diverge in finite time (factorially suppressed at large p).

[Houseman in prep]
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Steps towards Electrodynamics

Dynamics presented above only increase particle-number.

F — j® F is not Hermitian: the equation of motion will break
unitarity.
Try including the Hermitian conjugate F +— j|F

0
S F=—iHF+j®F —j|F.
5 iHF +j ® Jl

Second order perturbative contribution includes loop-like term.

Current due to two-lepton state (x1, x2) can describe ete™
annihilation.
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Perturbative expansions of differential equations

@ Can perturbative expansions of differential equations generate
factorially-growing complexity? Yes, even as ODE: Lindstedt
algorithm for classical 3-body problem (siegei3 catlavortior]. Relationship to
multiscale analysis, renormalization.

e Remark: SU(n) gauge symmetry consistent with L?-norm.
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Conclusion

@ Concrete characterisation of state space.

v = @O M y@ ) yen

@ States are superpositions of configuration space amplitudes.

w(p) H (t, X1,X2,. .. 7xp)

iip...ip

@ Looking for modifications to free equations of motion, consistent with
underlying tensor structure, that may generate field theory
perturbatively.
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Extras
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Current due to multiple leptons

@ Current due to one lepton (x):
J4(x) = ¥ x)a’ P ().

o Current due to two leptons 1/(?)(xq, x0):
jk(x) =Trod / 1/J(2)(x, x’)w(z)(x, x’)Td3X' + Tr Cozjw(z)(x, X)w(o)f

0

where C = ( 8) (= charge conj. matrix).
@ Special case: two spatially-separated lepton states: (2 = ¢ A x.

J(x) = oTak ¢ + xTaky.
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Current due to multiple leptons

J*(x)=Tred / @ (x, X )P (x, X ) d3x + Tr Cadp® (x, x)yp O

Second term couples a two-lepton state to the vacuum.
o Vanishes if /(2 represents e~e~ or ete™. Non-zero only for eTe™

e First-order perturbation may give rise to ete™ — . (Check: needs to
vanish on-shell.)

@ Second-order perturbation may give rise to e"e™ — 2. (Need to
specify dynamics on lepton sector [Rujsenaars77Mareckioa]). Will it give loop
diagrams?
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Anticommutation relations

@ These tensor algebras carry a natural representation of the
commutation relations, independent of choice of dynamics.

Creation operator / exterior product:
alh=gAh
g

@ Annihilation operator / interior product: Define as Hermitian adjoint

of azf, that is the unique operator a, for which

(f,agh) = (alf, h) for all f,he A
@ Notation: [sternbergsa]

agh=glh
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Anticommutation relations

Let f, g € AL
o 1. {a;,ag} =0
Let h S A. e.g. [Sternberg64]
fAgNh=—gNfAh
a;a;h = —a;aih

o 2 {ar,a,} =0
Similarly

fl(g]h) = —gl(f]h)
aragh = —agarh.
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Anticommutation relations

Let f, g € AL

° 3. {afaag} = <f7g>
Let h e A.

fl(gnh)=(flg) Nh—gA(f]h)
afal,h =(f,g)h— a;afh

@ Compare with
faeal} = 8(x — x')

corresponding to the limits f — §3(x’) and g — 63(x).
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Relativistic covariance

@ p-particle state 1) € AP: space representation

P(t; X1, ..., Xp).

@ Treats t on a different footing to x. Doesn't that break relativity?

[e.g. Chen10, Haller60]

No, definitely not in the free theory and we'll discuss why.
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Poincaré algebra

@ Poincare group generates symmetry transformations corresponding to
relativistic covariance of a theory. Generators:

{P07P11P2aP31 J17J27J3 >K1>K2aK3}
————— e N e

translation space rotation Lorentz boost

o Lie algebra (specify commutator [, ‘]):

L[ P P K

P, | 0 0 0 P;

P; 0 0 eijkPk 5,'J'P0

J; 0 fijkPk eijk-/k e,-ijk

K; —Pj —50‘ Po €ijk Ky —e,-ijk [Foldy56].
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Relativistic covariance of Fock space

e Intrinsic representation of Poincaré algebra on A! (no t dependence):

P =0,
Jj = —€juxi0) + J;

Po = —iH = —a 0 — ifm

Kj = xiPo + Kj = —=xjaxdk — ixim + K;

_—1 I'UJ' 0 ._} o 0
i = 2 (0 i0j>’ KJ_2<O —O'J'>

) Differs from [Foldy56, Chakrabarti66, Bialynicki-Birula87, Hawton01].

where
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Poincaré algebra

Example:

as required.

David Houseman (UCL)

[Pi, Kjl = 101, x7Po + Kjl
= [81'7)(]730]
= [0, x]Po
= 5;Po

Differential field theory
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Relativistic covariance of Fock space

@ Py integrates to finite translation forward in time,

&= Pop = ity

e K; integrates to finite Lorentz boost (= change of inertial frame).

d
an? MY
;7] (x) = (—xjakak — ixjfm + KJ)w(X)

o w — enKJw |S aISO a Unitary transformation. [e.g. Houseman, in prep]
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Relativistic covariance of Fock space

@ Translation in time on Al...
Fro e itHF
@ ... and on products
fl A f2 — (e—itHf-l) A (e—itHf-2)
with linear extension to A2,

@ Similarly for boosts or any other Poincaré transformation.

Punchline: Poincaré rep on Al extends to Poincaré rep on AP. Therefore,
tensor-algebraic implementation of second quantization is consistent with
special relativity.
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Energy in the classical limit

Departure from unitarity?

%(F, F)=2Re(j® F,F)

= 2Re(F,j|F)

d1 log F, F = Re{j, f)

dt?
= /d3xj(x) - E(x)
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Energy in the classical limit

(F,F) = (Coh f, Coh f)

L OFLfO...Of)

PZO p p
=1
=D aPNf )P
2
= (P!
— off)

Therefore, when F is a coherent state,

Classical energy = % log(F, F)
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Projection operators

Dirac Hamiltonian:
H(k) = o/k; + Bm

and H? = E? = k? + m?. Orthogonal eigenspaces with eigenvalues +E.
Projection operators:

D(k) > Prkd(k), P (k) = iH(Qka

project onto £ energy subspaces. Multiplication in k-space means
convolution in real space:

(Ps)(t, x) = / Bx' Pyt x — x'y(0, X'
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Example Hamiltonian [Halierso:

Hiree = Z alakwk
k

Hine = Z(al + ak)Vk
k
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Figure: A contribution to the electron self energy.
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