Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

Minimal Walking Technicolor Spectroscopy

Eoin Kerrane

University of Edinburgh

March 31, 2010

Supervisor: Luigi Del Debbio Work with: LdD, Biagio Lucini, Francis Bursa, et. al

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

1 Introduction DEWSB

2 Technicolor Pure Extended Walking

Table of contents

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

1 Introduction DEWSB

2 Technicolor

Extended Walking

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

1 Introduction DEWSB

2 Technicolor

Pure Extended Walking

4 Results

6 Conclusions

Outline

▲□▶
▲□▶
■▶
■▶
■▶

Standard Model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Eoin Kerrane

Introduction

DEWSB

Technicolor

Pure Extende

Walking

Lattice

Results

Conclusions

$\mathcal{L}_{SM} = \mathcal{L}_{G} + \mathcal{L}_{F} + \mathcal{L}_{H}$

$$\mathcal{G}_{SM} = SU(3)_C \times SU(2)_I \times U(1)_Y$$

$$\downarrow$$
 $\mathcal{G}_{obs} = SU(3)_C \times U(1)_{EM}$

Eoin Kerrane

Introduction

DEWSB

Technicolor

Pure Extended Walking

vvaiking

Lattice

Results

Conclusions

SM minus Higgs

$$\mathcal{L} = \mathcal{L}_{G} + \mathcal{L}_{F}$$

$$\mathcal{G} = SU(3)_{\mathcal{C}} \times SU(2)_{\mathcal{I}} \times U(1)_{\mathcal{Y}}$$

$${\cal L}_{\cal C} + {\cal L}_q
ightarrow {\cal L}_\chi = rac{f^2}{4} {
m Tr}[(D^\mu \Sigma)^\dagger D_\mu \Sigma]$$

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma - i\frac{g}{2}\tau^{a}A_{\mu}^{a}\Sigma + i\frac{g'}{2}\Sigma\tau^{3}B_{\mu}$$

$$\Sigma = \exp\left(\frac{2i}{f}\tau^a\pi^a\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

DEWSB

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Spectroscopy Eoin Kerrane

Minimal Walking

Technicolor

Introduction

DEWSB

- Technicolor
- Pure Extended
- vvaiking
- Lattice
- Results
- Conclusions

$$\begin{split} |D_{\mu}\Sigma|^{2} &= \frac{g^{2}}{4} \left(A'^{a}_{\mu} - \frac{4}{fg} \partial_{\mu}\pi^{a}\right)^{2} \\ (A')^{a}_{\mu} &= \left(A^{1}_{\mu}, A^{2}_{\mu}, A^{3}_{\mu} - \frac{g'}{g} B_{\mu}\right) \\ W^{a}_{\mu} &\equiv A'^{a}_{\mu} - \frac{4}{fg} \partial_{\mu}\pi^{a} \\ Z_{\mu} &\equiv \frac{g}{\sqrt{g^{2} + g'^{2}}} W^{3}_{\mu} \end{split}$$

 $\mathcal{G} = SU(3)_C \times SU(2)_I \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{EM}$

Outline

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Technicolor Spectroscopy Foin Kerrane

Minimal Walking

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

1 Introduction DEWSB

2 Technicolor Pure Extended Walking

3 Lattice

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended

Lattice

Results

Conclusions

1 Introduction DEWSB

2 Technicolor Pure Extended Walking

3 Lattice

4 Results

Outline

$QCD \times 10^3$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spectroscopy Eoin Kerrane

Minimal Walking

Technicolor

Introduction DEWSB

Technicolor

Pure

Extended Walking

Lattice

Results

Conclusions

Can we use this mechanism at the GeV scale?

$$\mathcal{G}_{TC} = \mathcal{G}_{SM} \times SU(N_T)$$

- N_D techniquark pairs (U, D)
- Becomes strong at $\Lambda_{\mathcal{TC}}\sim\!\!100~\text{GeV}$

$$\langle \bar{T}_{iL} T_{jR} \rangle \sim \delta_{ij} \Lambda_{TC}^3$$

$$F_T \sim \sqrt{rac{N_T}{3}} \left(rac{\Lambda_{TC}}{\Lambda_{QCD}}
ight) f_\pi$$

Eoin Kerrane

Introductio DEWSB

Technicolor

Pure Extended

Lattice

Results

Conclusions

1 Introduction DEWSB

2 Technicolor Pure Extended Walking

Outline

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Minimal Walking Extended Technicolor Technicolor Spectroscopy Except! $m_{q,l} = 0$ Eoin Kerrane $\mathcal{G}_{FTC} \supset \mathcal{G}_{TC}$ Extended $F_T^2 M_{\pi_T}^2 \simeq 2m_T (M_{ETC}) \langle \bar{T} T \rangle_{ETC}$ $\alpha: \overline{T}\gamma_{\mu}T$ $m_{q,l}(M_{ETC}) \sim \frac{1}{\Lambda_{ETC}^2} \langle \bar{T}T \rangle_{ETC}$ $\beta: \bar{T}\gamma_{\mu}q$ $2M_K^0 \Delta M_K(M_{ETC}) = \frac{Re(\gamma_{sd}^2)}{2\Lambda_{ETC}} f_k^2 M_K^2$ $\gamma: \bar{q}\gamma_{\mu}q$ $S \simeq N_D \frac{d(R)}{\epsilon}$ ・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Outline

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Walking Technicolor Spectroscopy

Minimal

Eoin Kerrane

Introductio DEWSB

Technicolor

Pure Extended Walking

warking

Poculto

Conclusions

1 Introduction DEWSB

2 Technicolor Pure Extended

Walking

Condensate

• Masses from ETC depend on

$$\langle \bar{T} T \rangle_{ETC} = \langle \bar{T} T \rangle_{TC} Z(\Lambda_{TC}, \Lambda_{ETC})$$

 $Z(\Lambda_{TC}, \Lambda_{ETC}) = \exp\left(\int_{\Lambda_{TC}}^{\Lambda_{ETC}} \frac{d\mu}{\mu} \gamma(\mu)\right)$

- Before assumed $\gamma(\mu) \sim \alpha_{TC}(\mu) \rightarrow 0$ for $\mu > \Lambda_{TC}$ and so $Z \sim 1$
- If γ constant between Λ_{TC} , Λ_{ETC} then

$$Z \sim \left(\frac{\Lambda_{ETC}}{\Lambda_{TC}}\right)^{\gamma} \tag{1}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Minimal Walking Technicolor Spectroscopy

Eoin Kerrane

Introductio DEWSB

Technicolor

Pure Extended

Walking

Lattice

Results

Conclusions

What walks?

Spectroscopy Eoin Kerrane

Minimal Walking

Technicolor

Introduction DEWSB

Technicolor

Pure

Extended Walking

Results

Conclusions

$$\beta(g) = -\beta_0 g^2 - \beta_1 g^3$$

$$\beta_0 = \frac{1}{4\pi} \left(\frac{11}{3} N_c - \frac{4}{3} T(R) N_f \right)$$

$$\beta_1 = \frac{1}{(4\pi)^2} \left[\frac{34}{3} N_c^2 + \left(\frac{1}{N_c} - \frac{13}{3} N_c \right) N_f \right]$$

Three possibilities:

- QCD-like
- Walking
- Conformal

Suggested that conformal theories would also serve to help technicolor in the same way.

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended

Walking

Lattice

Results

Conclusions

Minimal Walking Technicolor

- $\mathcal{G}_{TC} = SU(2)$, & 2 adjoint fermions
- Attracted considerable theoretical interest
- Gauge coupling unification
- Dark Matter Candidates

Eoin Kerrane

Introductio DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

1 Introduction DEWSB

2 Technicolor

Extended Walking

3 Lattice

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Lattice Technicolor

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

Non-perturbative problem

- Increasingly active field in recent years
- Attention to many different theories N_f , N_c , R.
- Two approaches
 - Running Coupling (SF Method)
 - Spectrum Measurements
- Several studies of MWT. Some evidence for novel behaviour.
- Bulk phase transition $\beta\sim 2$

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

1 Introduction DEWSB

2 Technicolor Pure Extended

Walking

Outline

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

Framework

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spectroscopy Eoin Kerrane

Minimal Walking

Technicolor

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

- Complements previous work
- Wilson fermions, $\beta = 2.25$
- Configs from HiRep code
- Smeared Inversion using modified Chroma
- Observables: $am_{PCAC} = am$, $am_{PS} am_V$, $a^2 G_{PS}$, af_{PS} , af_V

Meson Masses

Spectroscopy Eoin Kerrane

Minimal Walking

Technicolor

Introduction

Technicolor

Pure

Walking

Lattice

Results

Conclusions

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Eoin Kerrane

Technicolor

Pure

Walking

Lattice

Results

Conclusions

Decay Constants

Pseudoscalar Decay Constant

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended

Lattice

Results

Conclusions

Ratios

Ratio of m_V to m_PS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

Anomalous Dimension Fits

 $M_{\rm X} \sim m^{rac{1}{1+\gamma}}$

- In a conformal scenario all observables of mass dimension one are expected to scale together (hyperscaling).
- Initial fits of masses to universal curves suggest $\gamma \leq$ 0.5

Eoin Kerrane

Introduction

Technicolor

Pure Extended

Walking

Lattice

Results

Conclusions

Fitting Anomalous Dimensions

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Eoin Kerrane

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

1 Introduction DEWSB

2 Technicolor Pure Extended Walking

3 Lattice

4 Results

Outline

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spectroscopy Eoin Kerrane

Minimal Walking

Technicolor

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

- MWT is an interesting Yang-Mills theory could help Technicolor avoid EW & Flavour constraints.
- Indications of novel near-conformal dynamics
- Preliminary simulations must be extended in order to gain additional precision.

Future Work

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Spectroscopy Eoin Kerrane

Minimal Walking

Technicolor

Introduction DEWSB

Technicolor

Pure Extended Walking

Lattice

Results

Conclusions

- Complete scaling analysis
- Evaluate MWT contribution to S