Renormalons and N^3 LO CORGI approach for $\hat{R}(s)_{\tau}$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

Institute for Particle Physics Phenomenology, Durham

Tuesday, 15.30, March 2009 - IOP 2010, UCL

Pascalius Lai Ho Shie / Dr Chris J Maxwell

stitute for Particle Physics Phenomenology, Durhan

イロト イヨト イヨト イ

Renormalons, CIPT & CORGI in Brief

Chains & Bubbles Large Nf and Leading b Approximation Borel Transform and Renormalons CIPT + CORGI

Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ $\hat{R}(s)_{\tau}$ ALEPH Comparison Conclusions

Pascalius Lai Ho Shie / Dr Chris J Maxwell

astitute for Particle Physics Phenomenology, Durham

Outline	Renormalons, CIPT & CORGI in Brief • • • •	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ 0000 00 00
Chains & Bubbles		

Chains & Bubbles

- Consider a QED 1-loop vacuum diagram
- Connects n of them....
- ...then insert back into the bubble

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

\sim				
()	t I	n	0	
\sim				

Chains & Bubbles

Chains & Bubbles

- Consider a QED 1-loop vacuum diagram
- Connects n of them....
- ...then insert back into the bubble
- This is the (gauge boson propagator B^{μν}(k²)) given by...

- *ロ* *圖* *画* *画* 三国・今日や

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

Outline	Renormalons, CIPT & CORGI in Brief • • • •	Theoretical Results of N^3 LO CORGI $\hat{R}(s)$, 0000 00 00
Chains & Bubbles		

Chains & Bubbles

- Consider a QED 1-loop vacuum diagram
- Connects n of them....
- ...then insert back into the bubble
- This is the (gauge boson propagator B^{μν}(k²)) given by...

$$\frac{1}{t}$$

$$B^{\mu\nu}(k^2) = \left(\frac{-i}{k^2}\right)\left[g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{k^2}\right]\frac{1}{1+\Pi_0} + \left(\frac{-i}{k^2}\right)\frac{k^{\mu}k^{\nu}}{k^2}\xi$$

- ▲日 > ▲ 画 > ▲ 画 > ▲ 画 > ろぐの

Pascalius Lai Ho Shie / Dr Chris J Maxwell

institute for Particle Physics Phenomenology, Durham

Large Nf and Leading b Approximation

The summation of vacuum diagrams with 1 to n-bubbles is...

- * ロ * * @ * * 三 * * 三 * * 0 * 0

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durhan

Large Nf and Leading b Approximation

- ▶ The summation of vacuum diagrams with 1 to n-bubbles is...
- called the Adler-D function $D = \sum_{n=1}^{\infty} d_n a^{n+1}$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

stitute for Particle Physics Phenomenology, Durham

э

Large Nf and Leading b Approximation

- The summation of vacuum diagrams with 1 to n-bubbles is...
- called the Adler-D function $D = \sum_{n=1}^{\infty} d_n a^{n+1}$
- with d_n expressed in polynomial of Nf_(number of flavours) as $d_n = d_n^{[n]} N_f^n + d_n^{[n-1]} N_f^{n-1} + \ldots + d_n^{[0]}$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

stitute for Particle Physics Phenomenology, Durham

0

Large Nf and Leading b Approximation

- The summation of vacuum diagrams with 1 to n-bubbles is...
- ► called the Adler-D function $D = \sum_{n=1}^{\infty} d_n a^{n+1}$
- with d_n expressed in polynomial of Nf_(number of flavours) as $d_n = d_n^{[n]} N_f^n + d_n^{[n-1]} N_f^{n-1} + \ldots + d_n^{[0]}$
- ▶ replacing Nf=(33/2 3b), then $d_n = d_n^{(n)} b^n + d_n^{(n-1)} b^{n-1} + ... + d_n^{(0)}$

- ・ロト ・回 ・ ・ヨト ・ヨー うんの

Pascalius Lai Ho Shie / Dr Chris J Maxwell

Institute for Particle Physics Phenomenology, Durham

0

Large Nf and Leading b Approximation

- The summation of vacuum diagrams with 1 to n-bubbles is...
- called the Adler-D function $D = \sum_{n=1}^{\infty} d_n a^{n+1}$
- with d_n expressed in polynomial of Nf_(number of flavours) as $d_n = d_n^{[n]} N_f^n + d_n^{[n-1]} N_f^{n-1} + \ldots + d_n^{[0]}$
- ▶ replacing Nf=(33/2 3b), then $d_n = d_n^{(n)} b^n + d_n^{(n-1)} b^{n-1} + ... + d_n^{(0)}$
- The term $d_n^{(L)} = d_n^{(n)} b^n$ can approximate d_n to all orders.

0

Large Nf and Leading b Approximation

- The summation of vacuum diagrams with 1 to n-bubbles is...
- called the Adler-D function $D = \sum_{n=1}^{\infty} d_n a^{n+1}$
- with d_n expressed in polynomial of Nf_(number of flavours) as $d_n = d_n^{[n]} N_f^n + d_n^{[n-1]} N_f^{n-1} + \dots + d_n^{[0]}$
- ▶ replacing Nf=(33/2 3b), then $d_n = d_n^{(n)} b^n + d_n^{(n-1)} b^{n-1} + ... + d_n^{(0)}$
- The term $d_n^{(L)} = d_n^{(n)} b^n$ can approximate d_n to all orders.
- ► The beta-function with renormalization scale µ and running coupling a(µ²) is

0

Large Nf and Leading b Approximation

- The summation of vacuum diagrams with 1 to n-bubbles is...
- called the Adler-D function $D = \sum_{n=1}^{\infty} d_n a^{n+1}$
- with d_n expressed in polynomial of Nf_(number of flavours) as $d_n = d_n^{[n]} N_f^n + d_n^{[n-1]} N_f^{n-1} + \dots + d_n^{[0]}$
- ► replacing Nf=(33/2 3b), then $d_n = d_n^{(n)} b^n + d_n^{(n-1)} b^{n-1} + ... + d_n^{(0)}$
- The term $d_n^{(L)} = d_n^{(n)} b^n$ can approximate d_n to all orders.
- ► The beta-function with renormalization scale µ and running coupling a(µ²) is

$$\beta(\mathbf{a}) = -ba^2(1+ca+c2a^2+c3a^3+\ldots)$$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

ヘロン ヘロン ヘヨン ヘヨン

Borel Transform and Renormalons

• with a resummation of d_n all orders results in

- * ロ * * @ * * 注 * * 注 * の < 0

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

• with a resummation of d_n all orders results in

$$D^{(L)}(Q^2) = \int_0^\infty dz e^{-z/a} B[D^{(L)}](z)$$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

►

stitute for Particle Physics Phenomenology, Durham

2

・ロト ・回ト ・ヨト ・ヨト

• with a resummation of d_n all orders results in

$$D^{(L)}(Q^2) = \int_0^\infty dz e^{-z/a} B[D^{(L)}](z)$$

• which $B[D^{(L)}](z)$ is the Borel transform given by...

Pascalius Lai Ho Shie / Dr Chris J Maxwell

►

(ロ)(日)(H)

Institute for Particle Physics Phenomenology, Durham

• with a resummation of d_n all orders results in

$$D^{(L)}(Q^2) = \int_0^\infty dz e^{-z/a} B[D^{(L)}](z)$$

which B[D^(L)](z) is the Borel transform given by...

$$B[D_{PT}^{(L)}](z) = \sum_{n=1}^{\infty} \frac{A_0(n) - A_1(n)z_n}{(1 + \frac{z}{z_n})^2} + \frac{A_1(n)z_n}{(1 + \frac{z}{z_n})} + \sum_{n=1}^{\infty} \frac{B_0(n) + B_1(n)z_n}{(1 - \frac{z}{z_n})^2} - \frac{B_1(n)z_n}{(1 - \frac{z}{z_n})}$$

・ ・ ロ ト ・ 昼 ト ・ 星 ト ・ 星 ・ の へ ()

Pascalius Lai Ho Shie / Dr Chris J Maxwell

►

nstitute for Particle Physics Phenomenology, Durham

• with a resummation of d_n all orders results in

$$D^{(L)}(Q^2) = \int_0^\infty dz e^{-z/a} B[D^{(L)}](z)$$

which B[D^(L)](z) is the Borel transform given by...

$$B[D_{PT}^{(L)}](z) = \sum_{n=1}^{\infty} \frac{A_0(n) - A_1(n)z_n}{(1 + \frac{z}{z_n})^2} + \frac{A_1(n)z_n}{(1 + \frac{z}{z_n})} + \sum_{n=1}^{\infty} \frac{B_0(n) + B_1(n)z_n}{(1 - \frac{z}{z_n})^2} - \frac{B_1(n)z_n}{(1 - \frac{z}{z_n})}$$

▶ with z=±z_n at where the singularities lie are called RENORMALONS.

Pascalius Lai Ho Shie / Dr Chris J Maxwell Renormalons and N^3 LO CORGI approach for $\hat{R}(s)_{\tau}$

►

• Consider the ratio total τ hadronic to leptonic decay width

Pascalius Lai Ho Shie / Dr Chris J Maxwell

Institute for Particle Physics Phenomenology, Durhan

• Consider the ratio total τ hadronic to leptonic decay width

$$R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} + hadrons)}{\Gamma(\tau \to \nu_{\tau} e^{-}\overline{\nu}_{e})} = N(V_{ud}^{2} + V_{us}^{2})S_{EW}[1 + \frac{5\alpha(m_{\tau}^{2})}{12\pi} + \hat{R}(s)_{\tau} + \delta_{pc}]$$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

stitute for Particle Physics Phenomenology, Durham

Ξ.

 \blacktriangleright Consider the ratio total τ hadronic to leptonic decay width

$$R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} + hadrons)}{\Gamma(\tau \to \nu_{\tau} e^{-}\overline{\nu}_{e})} = N(V_{ud}^{2} + V_{us}^{2})S_{EW}[1 + \frac{5\alpha(m_{\tau}^{2})}{12\pi} + \hat{R}(s)_{\tau} + \delta_{pc}]$$

► Using Countour Improved Perturbation Theory(reformulating around a circular contour √s) and...

2

Outline	Renormalons, CIPT & CORGI in Brief o o • •	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{ au}$ 0000 00
CIPT + CORGI		

- Consider the ratio total au hadronic to leptonic decay width

$$R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} + hadrons)}{\Gamma(\tau \to \nu_{\tau} e^{-}\overline{\nu}_{e})} = N(V_{ud}^{2} + V_{us}^{2})S_{EW}[1 + \frac{5\alpha(m_{\tau}^{2})}{12\pi} + \hat{R}(s)_{\tau} + \delta_{pc}]$$

► Using Countour Improved Perturbation Theory(reformulating around a circular contour √s) and...

► and Complete Renormalization Group Improvement Ensuring

RS-Invariance, hence setting c2...cn = 0

Pascalius Lai Ho Shie / Dr Chris J Maxwell

Outline	Renormalons, CIPT & CORGI in Brief o o • •	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{ au}$ 0000 00
CIPT + CORGI		

- Consider the ratio total au hadronic to leptonic decay width

$$R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} + hadrons)}{\Gamma(\tau \to \nu_{\tau} e^{-}\overline{\nu}_{e})} = N(V_{ud}^{2} + V_{us}^{2})S_{EW}[1 + \frac{5\alpha(m_{\tau}^{2})}{12\pi} + \hat{R}(s)_{\tau} + \delta_{pc}]$$

- ► Using Countour Improved Perturbation Theory(reformulating around a circular contour √s) and...
- ► and Complete Renormalization Group Improvement Ensuring

RS-Invariance, hence setting c2...cn = 0

• The Adler-D CORGI scheme is $D = a_0 + \sum_{n=2}^{\infty} X_n a_0^{n+1}$

• Consider the ratio total au hadronic to leptonic decay width

$$R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} + hadrons)}{\Gamma(\tau \to \nu_{\tau} e^{-}\overline{\nu}_{e})} = N(V_{ud}^{2} + V_{us}^{2})S_{EW}[1 + \frac{5\alpha(m_{\tau}^{2})}{12\pi} + \hat{R}(s)_{\tau} + \delta_{pc}]$$

- ► Using Countour Improved Perturbation Theory(reformulating around a circular contour √s) and...
- and Complete Renormalization Group Improvement Ensuring

RS-Invariance, hence setting c2...cn = 0

- ▶ The Adler-D CORGI scheme is $D = a_0 + \sum_{n=2}^{\infty} X_n a_0^{n+1}$
- Thus the perturbative corrections $\hat{R}(s)_{\tau}$ is...

$$\hat{R}(s)_{ au} = rac{1}{2\pi}\int_{-\pi}^{\pi}W(heta)D(s_{0}e^{i heta})d heta$$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

stitute for Particle Physics Phenomenology, Durham

・ロン ・回 と ・ ヨン・

• Consider the ratio total au hadronic to leptonic decay width

$$R_{\tau} = \frac{\Gamma(\tau \to \nu_{\tau} + hadrons)}{\Gamma(\tau \to \nu_{\tau} e^{-}\overline{\nu}_{e})} = N(V_{ud}^{2} + V_{us}^{2})S_{EW}[1 + \frac{5\alpha(m_{\tau}^{2})}{12\pi} + \hat{R}(s)_{\tau} + \delta_{pc}]$$

- ► Using Countour Improved Perturbation Theory(reformulating around a circular contour √s) and...
- and Complete Renormalization Group Improvement Ensuring

RS-Invariance, hence setting c2...cn = 0

- ▶ The Adler-D CORGI scheme is $D = a_0 + \sum_{n=2}^{\infty} X_n a_0^{n+1}$
- Thus the perturbative corrections $\hat{R}(s)_{\tau}$ is...

$$\hat{R}(s)_{ au} = rac{1}{2\pi}\int_{-\pi}^{\pi}W(heta)D(s_{0}e^{i heta})d heta$$

• with $D(s_0e^{i\theta})$ integrated along the complex s-plane

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

Outline	Renormalons, CIPT & CORGI in Brief 0 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ $\bigcirc 000$ $\odot 0$
$\hat{R}(s)_{ au}$		

...We will consider 2 variants for this calculation

▲口 > ▲圖 > ▲目 > ▲目 > ▲目 > ● ●

Pascalius Lai Ho Shie / Dr Chris J Maxwell

Institute for Particle Physics Phenomenology, Durhan

Outline	Renormalons, CIPT & CORGI in Brief o o o o	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ $0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$\hat{R}(s)$		

- ...We will consider 2 variants for this calculation
- ...1st one is pure leading CORGI with X^[L]_n terms constructed in V-scheme given by (C_{n+1} denotes the coefficient)...

Pascalius Lai Ho Shie / Dr Chris J Maxwell

Outline	Renormalons, CIPT & CORGI in Brief 0 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ 0000_{\circ} 00
ê()		

- ...We will consider 2 variants for this calculation
- ...1st one is pure leading CORGI with X^[L]_n terms constructed in V-scheme given by (C_{n+1} denotes the coefficient)...

$$X_n^{[L]} = C_{n+1}[\sum_{k=0}^{\infty} d_n^L(V)(a/(1+ad_1^{(L)}(V))^{k+1}]$$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

Outline	Renormalons, CIPT & CORGI in Brief 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ \odot \odot \odot
^		

 $R(s)_{\tau}$

- ...We will consider 2 variants for this calculation
- ...1st one is pure leading CORGI with X^[L]_n terms constructed in V-scheme given by (C_{n+1} denotes the coefficient)...

$$X_n^{[L]} = C_{n+1} [\sum_{k=0}^{\infty} d_n^L(V) (a/(1 + ad_1^{(L)}(V))^{k+1}]$$

▶ ...2nd one is the substitution of $X_n^{[L]}$ with X_n for n = 1, 2, 3 constructed from c1, c2 and latest c3 aka NLO, N^2LO , N^3LO thus $X_1 = 0, X_2 = d_2 - d_1^2 - cd_1 - c2...$

Dutline	Renormalons, CIPT & CORGI in Brief 0 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ \odot \odot \odot

 $R(s)_{\tau}$

- ...We will consider 2 variants for this calculation
- ...1st one is pure leading CORGI with X^[L]_n terms constructed in V-scheme given by (C_{n+1} denotes the coefficient)...

$$X_n^{[L]} = C_{n+1} [\sum_{k=0}^{\infty} d_n^L(V) (a/(1 + ad_1^{(L)}(V))^{k+1}]$$

▶ ...2nd one is the substitution of X_n^[L] with X_n for n = 1, 2, 3 constructed from c1, c2 and latest c3 aka NLO, N²LO , N³LO thus X₁ = 0, X₂ = d₂ - d₁² - cd₁ - c2...
 ▶ and X₃ = d₃ - d₁³ - ^{5c}/₂d₁² - (3X₂ - 2c2)d₁ - ^{c3}/₂

 11111	line	

 $\hat{R}(s)_{\tau}$

Numerical Procedure of $\hat{R}(s)_{\tau}$

R̂(s)_τ can be split into K steps of size Δθ = π/K ranging from θ=0,π

- ・ロト・日本・モト・モー ショー のく

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

	. 1		
	- 1	20	
0	ιı		

 $\hat{R}(s)_{\tau}$

Numerical Procedure of $\hat{R}(s)_{\tau}$

R̂(s)_τ can be split into K steps of size Δθ = π/K ranging from θ=0,π

$$\frac{R(s_0)}{2\pi} \simeq \frac{\Delta\theta}{2\pi} [W(0)D(s_0) + 2Re\sum_{n=1}^{K} W(\theta_n)D(s_n)]$$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

< (17) > <

	. 1		
	- 1	20	
0	ιı		

 $\hat{R}(s)_{\tau}$

Numerical Procedure of $\hat{R}(s)_{\tau}$

R̂(s)_τ can be split into K steps of size Δθ = π/K ranging from θ=0,π

$\boxed{\textit{\textit{R}}(\textit{s}_0) \simeq \frac{\triangle \theta}{2\pi} [\textit{W}(0)\textit{D}(\textit{s}_0) + 2\textit{Re}\sum_{n=1}^{K} \textit{W}(\theta_n)\textit{D}(\textit{s}_n)]}$

• $W(\theta_n)$ is the Weight function and $D(s_n) = \bar{a}_n + \sum_{n>2}^{\infty} X_n \bar{a}_n^{n+1}$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

Outline

 $\hat{R}(s)_{\tau}$

Numerical Procedure of $\hat{R}(s)_{\tau}$

R̂(s)_τ can be split into K steps of size Δθ = π/K ranging from θ=0,π

$$\frac{R(s_0)}{2\pi} \simeq \frac{\Delta\theta}{2\pi} [W(0)D(s_0) + 2Re\sum_{n=1}^{K} W(\theta_n)D(s_n)]$$

- $W(\theta_n)$ is the Weight function and $D(s_n) = \bar{a}_n + \sum_{n>2}^{\infty} X_n \bar{a}_n^{n+1}$ • Using Taylor's Theorem
- Using Taylor's Theorem

$$\bar{\mathbf{a}}_{n+1} = \bar{\mathbf{a}}_n - i \frac{\triangle \theta}{2} b B(\bar{\mathbf{a}}_n) - \frac{\triangle \theta^2}{8} B(\bar{\mathbf{a}}_n) B'(\bar{\mathbf{a}}_n)$$

+ $i \frac{\triangle \theta^3}{48} b^3 [B(\bar{\mathbf{a}}_n) B'(\bar{\mathbf{a}}_n)^2 + B''(\bar{\mathbf{a}}_n) B(\bar{\mathbf{a}}_n)^2] + O(\triangle \theta^4)$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

< □ ▶ < 圕 ▶ < 들 ▶ < 들 ▶ Ξ < ♡ ٩
 nstitute for Particle Physics Phenomenology, Durham

Outline

 $\hat{R}(s)_{\tau}$

Numerical Procedure of $\hat{R}(s)_{\tau}$

R̂(s)_τ can be split into K steps of size Δθ = π/K ranging from θ=0,π

$$\frac{R(s_0)}{2\pi} \simeq \frac{\Delta\theta}{2\pi} [W(0)D(s_0) + 2Re\sum_{n=1}^{K} W(\theta_n)D(s_n)]$$

W(θ_n)is the Weight function and D(s_n) = ā_n + Σ_{n>2}[∞] X_nā_nⁿ⁺¹
 Using Taylor's Theorem

$$\bar{\mathbf{a}}_{n+1} = \bar{\mathbf{a}}_n - i \frac{\bigtriangleup \theta}{2} bB(\bar{\mathbf{a}}_n) - \frac{\bigtriangleup \theta^2}{8} B(\bar{\mathbf{a}}_n) B'(\bar{\mathbf{a}}_n)$$

+ $i \frac{\bigtriangleup \theta^3}{48} b^3 [B(\bar{\mathbf{a}}_n) B'(\bar{\mathbf{a}}_n)^2 + B''(\bar{\mathbf{a}}_n) B(\bar{\mathbf{a}}_n)^2] + O(\bigtriangleup \theta^4)$

• ...which $B(x) = x^2 + cx^3 + c2x^4 + ...$ is the truncated beta function

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

Outline	Renormalons, CIPT & CORGI in Brief 0 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ OO OO OO OO OO
$\hat{R}(s)_{\tau}$		

$$\hat{R}(s)_{ au}$$
 vs $lpha_{s}(m_{ au}^{2})$

We then convert $\alpha_s(m_{\tau}^2) \rightarrow$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

Renormalons and N^3 LO CORGI approach for $\hat{R}(s)_{\tau}$

institute for Particle Physics Phenomenology, Durham

э

<ロ> <同> <同> <同> < 同>

Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ 0000

 $\hat{R}(s)_{\tau}$ vs $\alpha_s(m_Z)$ $\rightarrow \alpha_s(m_Z)$ through flavour threshold...

Pascalius Lai Ho Shie / Dr Chris J Maxwell

 $\hat{R}(s)_{\tau}$

2

Outline	Renormalons, CIPT & CORGI in Brief 0 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$
ALEPH Comparison		

ALEPH Comparison

We plot ratio total τ hadronic to leptonic decay width to energy of the particle (s)...

Pascalius Lai Ho Shie / Dr Chris J Maxwell Renormalons and N^3 LO CORGI approach for $\hat{R}(s)_{\tau}$

Institute for Particle Physics Phenomenology, Durham

ALEPH Comparison	Outline	Renormalons, CIPT & CORGI in Brief o o o o	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ $\stackrel{\circ \circ \circ \circ}{\stackrel{\circ \circ}{\circ}}$ $\stackrel{\circ \circ}{\circ}$
	ALEPH Comparison		

ALEPH Comparison

We plot ratio total τ hadronic to leptonic decay width to energy of the particle (s)...

$$R_{ au}(s_0) = \int_0^{s_0} rac{dR_{ au}(s)}{ds}$$

Pascalius Lai Ho Shie / Dr Chris J Maxwell

stitute for Particle Physics Phenomenology, Durhan

Outline	Renormalons, CIPT & CORGI in Brief 0 0 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$ $\stackrel{\circ \circ \circ \circ}{\circ}$ $\stackrel{\circ \circ}{\circ}$
ALEPH Comparison		

ALEPH Comparison

We plot ratio total τ hadronic to leptonic decay width to energy of the particle (s)...

$$R_{ au}(s_0) = \int_0^{s_0} rac{dR_{ au}(s)}{ds}$$

and made direct comparison with data from ALEPH....

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology, Durham

Pascalius Lai Ho Shie / Dr Chris J Maxwell

nstitute for Particle Physics Phenomenology. Durham

Outline	Renormalons, CIPT & CORGI in Brief 0 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$
Conclusions		

 N₃LO shows the reliability of CIPT + CORGI prediction in comparison to FOPT_{Fix} Order Perturbation Theory

Pascalius Lai Ho Shie / Dr Chris J Maxwell Renormalons and N^3 LO CORGI approach for $\hat{R}(s)_{\tau}$ ▲□ > ▲圖 > ▲ 圖 > ▲ 圖 > ◎ ④ (

Institute for Particle Physics Phenomenology, Durham

Outline	Renormalons, CIPT & CORGI in Brief 0 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$
Conclusions		

- N₃LO shows the reliability of CIPT + CORGI prediction in comparison to FOPT_{Fix} Order Perturbation Theory
- Prediction matches with ALEPH data for energy s > 0.525.

Pascalius Lai Ho Shie / Dr Chris J Maxwell

Outline	Renormalons, CIPT & CORGI in Brief o o o o	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$
Conclusions		

THANK YOU

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 めんの

Pascalius Lai Ho Shie / Dr Chris J Maxwell

Renormalons and N^3 LO CORGI approach for $\hat{R}(s)_{\tau}$

Institute for Particle Physics Phenomenology, Durham

Outline	Renormalons, CIPT & CORGI in Brief 0 0 0 0	Theoretical Results of N^3 LO CORGI $\hat{R}(s)_{\tau}$
Conclusions		

THANK YOU

THANK YOU ▶ and any Questions?

Pascalius Lai Ho Shie / Dr Chris J Maxwell

🗇 🕨 🖉 🖢 🖌 🖉 🕨

2