Strong coupling, discrete symmetry and flavour IOP HEPP & APP 2010

James Barnard and Steve Abel

Department of Mathematics and IPPP, Durham University

March 31st 2010

The flavour problem Addressing the flavour problem

Problem 1: mass hierarchies

James Barnard Strong coupling, discrete symmetry and flavour

Problem 2: mixing matrices

Experiments determine quark and neutrino mixing matrices

$$\begin{split} |V_{\rm CKM}| &= \left(\begin{array}{ccc} 0.974 & 0.226 & 0.004 \\ 0.226 & 0.973 & 0.042 \\ 0.009 & 0.041 & 0.999 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & \eta & \varepsilon\eta \\ \eta & 1 & \varepsilon \\ \varepsilon\eta & \varepsilon & 1 \end{array}\right) \\ |V_{\rm PMNS}| &\approx \left(\begin{array}{ccc} \sqrt{2/3} & \sqrt{1/3} & 0 \\ -\sqrt{1/6} & \sqrt{1/3} & -\sqrt{1/2} \\ -\sqrt{1/6} & \sqrt{1/3} & \sqrt{1/2} \end{array}\right) \end{split}$$

• Why are there small but non-zero off diagonal terms in $V_{
m CKM}$?

• Why are $V_{
m CKM}$ and $V_{
m PMNS}$ so different?

Some observations

Attempt to address these problems using two observations:

Observation

Neutrino mixing matrix suggests a discrete flavour symmetry.

Observation

Large hierarchies arise naturally in theories with strong coupling.

Mixing patterns from discrete symmetry

Observation

Neutrino mixing matrix suggests a discrete flavour symmetry.

- Highly symmetrical tribimaximal mixing.
- Many successful models¹ apply a discrete flavour symmetry.
- Examples of groups: A_4 , S_4 , $PSL_2(7)$, $\Delta(27)$...

Some general features:

- 3 generations \implies discrete group with a **3** representation.
- Extended Higgs sector.
- Favour symmetry broken with particular vacuum alignment.
- Flavour symmetries do not reproduce quark mixing matrix.

¹G.Altarelli, F.Feruglio - arXiv:1002.0211 [hep-ph]

The flavour problem Addressing the flavour problem Theoretical observations General strategy

Hierarchies from dynamical scales

Observation

Large hierarchies arise naturally in theories with strong coupling.

• Dynamical scales generated by renormalisation group flow:

$$\Lambda \sim E e^{-8b\pi^2/g^2(E)}$$

- Λ is dynamical strong coupling scale where $g \to \infty$.
- Exponential dependence \implies naturally large hierarchies.

The flavour problem Addressing the flavour problem Theoretical observations General strategy

Addressing the flavour problem

Postulate

The flavour problem can be solved using two principles:

O Discrete flavour symmetry for mixing.

Strong coupling for all hierarchies and flavour symmetry breaking.

Requirements

- Discrete flavour symmetry should contain a 3 representation.
- Flavour symmetry must be broken in the quark sector but **not** in the neutrino sector.
- Multiple strongly coupled sectors are needed to build hierarchies one per generation.
- Should be a generic feature of strong coupling.
- Note here strongly coupled \equiv asymptotically free.

Theoretical observations General strategy

Pictorial interpretation

- Strongly coupled sectors on spokes.
- Discrete flavour symmetry on hub.
- Spoke lengths generate hierarchies and break flavour symmetry.
- Quarks (on spokes) feel hierarchies and symmetry breaking.
- Neutrinos (near hub) do not.
- All mixing occurs on hub.

Yukawa couplings

How does it work?

• Suppose Q_a is actually **bound state**² of strongly coupled gauge group G_a .

 $\Lambda_a Q_a \sim Y_a Y_a$

• Elementary 'Yukawa' couplings are

$$V_{
m UV} \supset rac{1}{M_X} \xi_{ia} ar q_i (Y_a Y_a) \phi$$

• *M_X* is **UV cutoff scale**.

²M.J.Strassler - arXiv:hep-ph/9510342

Yukawa couplings

Match to low energy couplings

$$\frac{1}{M_X}\xi_{ia}\bar{q}_i(Y_aY_a)\phi\sim\lambda_{ia}\bar{q}_iQ_a\phi\quad\implies\quad\lambda_{ia}\sim\frac{\Lambda_a}{M_X}\xi_{ia}$$

- ξ_{ia} are parameters in elementary theory.
- Expect $\xi_{ia} \sim 1$ and flavour symmetry preservation.
- Λ_a are dynamical scales.
- $\Lambda_1 \ll \Lambda_2 \ll \Lambda_3$ natural \implies hierarchy in quark Yukawas.
- Differences typically break flavour symmetry.

Mass hierarchies

Strong coupling with composite left handed quark doublets and $\Lambda_1\ll\Lambda_2\ll\Lambda_3$ results in quark Yukawas

$$\lambda \sim \left(egin{array}{ccc} arepsilon\eta & arepsilon & 1 \ arepsilon\eta & arepsilon & 1 \ arepsilon\eta & arepsilon & 1 \end{array}
ight)$$

- $\varepsilon, \eta \ll 1$ parameterise hierarchy.
- Expect quark masses $\sim \varepsilon \eta$, ε , 1.

Result - large quark mass hierarchies

$$rac{m_d}{m_s} \sim rac{m_u}{m_c} \sim \eta ~~~ {
m and} ~~~ rac{m_s}{m_b} \sim rac{m_c}{m_t} \sim arepsilon$$

- Account for discrepancies with **confinement scheme**.
- Set $\Lambda_a \bar{e}_a \sim Y_a Y_a$ for charged lepton mass hierarchy.

Mixing hierarchies

Quark mixing matrix attained by diagonalising quark Yukawas.

- Assume λ_u already diagonal for simplicity.
- Diagonalise λ_d with **biunitary rotation**

$$\hat{\lambda}_{d} \sim \textit{U}_{d}^{\dagger} \left(egin{array}{cc} arepsilon \eta & arepsilon & 1 \ arepsilon \eta & arepsilon & 1 \ arepsilon \eta & arepsilon & 1 \end{array}
ight) \textit{V}_{d}$$

• U_d sees no hierarchy in rows of $\lambda_d \implies U_d \sim 1$. • $V_d = V_{CKM}^{\dagger}$ sees hierarchy in columns of λ_d .

Result – large quark mixing hierarchies

$$V_d \sim \left(egin{array}{ccc} 1 & \eta & arepsilon\eta \ \eta & 1 & arepsilon \ arepsilon\eta & arepsilon & arepsilon
ight)$$

Mixing hierarchies

Different story in neutrino³ sector:

- Assume elementary neutrinos \implies no hierarchies in Yukawa.
- Neutrinos do not see strong coupling.
- Mixing determined only by elementary coupling constants.
- Preserves flavour symmetry \implies tribimaximal mixing.

Summary

The flavour problem can be addressed using two principles:

- Discrete flavour symmetry for mixing.
- Strong coupling for hierarchies and flavour symmetry breaking.
- Quarks see strong coupling effects, neutrinos do not.
- Mixing only on hub.

Simple examples use Z_3 permutation symmetry with strong coupling described by:

- S-confinement
- AdS/CFT correspondence with same results.