RFQ Injector for *PAMELA* FFAG

Matt Easton Imperial College London

PAMELA

Fixed Field Alternating Gradient (FFAG) accelerator for cancer therapy using protons and carbon ions

radiotherapy

treating cancer with particles

dose profile

showing relative dose to tissue at different depths

child medulloblastoma conventional radiotherapy

M J Easton Wednesday 31 March 2010

child medulloblastoma proton therapy

M J Easton Wednesday 31 March 2010

http://basroc.rl.ac.uk

- British Accelerator Science and Radiation Oncology Consortium
- academic, industrial and medical contributors

aim:

" the aim of BASROC is to build a complete hadron therapy facility using a novel accelerator technology called a non-scaling fixed field alternating gradient accelerator (ns-FFAG)."

http://basroc.rl.ac.uk

- EMMA
 Electron Model for Many Applications
- PAMELA
 Particle Accelerator for MEdicaL Applications
- full clinical facility

Fixed Field Alternating Gradient

M J Easton Wednesday 31 March 2010

FFAG accelerators

Fixed Field Alternating Gradient

fixed field

- no field ramping as in a synchrotron
- field increases with radius to keep beam orbits within beam pipe at all energies
- alternating gradient
 - alternating horizontal and vertical focusing controls betatron oscillations
 - alternating field directions invoke scalloped orbit shapes

ns-FFAG accelerators Non-Scaling Fixed Field Alternating Gradient

PAMELA injector carbon 6+ injector for FFAG

RFQ Design CST ElectroMagnetic Studio

Front End Test Stand: Radio-Frequency Quadrupole

RFQ acceleration

Vane modulations produce accelerating field

design model using CST EM Studio

FETS field map produced from RFQSIM, tracked with GPT

FETS field map in CST based on *Inventor* CAD model in five sections

FETS field map comparison Theoretical field CAD field

A DA A DIT TO CHATTER BASES & MANY ME TO CONTRACT

field scaling for PAMELA

- reduced input energy from 65 keV to 12 keV/u
 - velocity reduction by factor of 0.43
 - requires reduction in synchronous velocity of RFQ

field scaling for PAMELA

reduce frequency from 324 MHz to 280 MHz
 factor of 0.86

- reduce length from 4.1m to 2.0mfactor of 0.50
- total reduction of 0.43 as required

first PAMELA field map based on a scaled version of the FETS RFQ field map

field map comparisonFETS fieldPAMELA field

RFQ Design Upgraded design model Comsol and Matlab

original design model using CST EM Studio

upgraded design model using Comsol and Matlab

Comsol FETS RFQ simulations

Comsol FETS RFQ simulations

Comsol FETS RFQ simulations

to do:

- integrate Comsol with Matlab and Inventor
- build new PAMELA RFQ design
- optimise new design through iteration
- find the optimum point to switch from RFQ to Linac
- produce complete simulation from ion source to injection

RFQ Injector for *PAMELA* FFAG

Matt Easton Imperial College London

