international linear collider

BPM Energy Spectrometry for the International Linear Collider

Bino Maiheu for Alex, Stew, Fil, Steve, Matthew & David

UCL – HEP group meeting

- Accelerating gradient ~ 35-40 MeV/m
- Damping rings, sources, final focus
 - Lumi ~ $f_{rep} / \sigma_x \sigma_y$
 - f_{rep} = 40 kHz (LEP), = 5 Hz (ILC)
 - -> beam size ~ 1000 times smaller
 - Test facilities !!
- Civil engineering,
- Beam Delivery System : you only get 1 go !!!
 - UK has leading role
 - Beam energy measurement
- High quality physics need accuracy (see later)
- No averaging over bunches possible
- Min. impact on the beam and physics datataking

Importance of energy measurement

Filimon is developing MC generator for top quark production

- based upon TOPPIK
- some "voodoo" to improve speed
- ILC workshops Vancouver & Valencia

Introducing... Filimon, our one leg in "proper" physics :-) ...

- Study of top quark important for standard model / SUSY constraints
- Top quark : large decay width -> pQCD
- $\Gamma \circ ILC = top quark factory, QCD precision tests$
 - Top pair production cross section : TOPPIK

Influence of beam energy...

GDE stresses importance of link between accelerator physics & particle physics

BPM Spectrometry

Study & design magnetic chicane for beam energy measurement using Beam Position Monitors (BPMs)

NanoBPM@ATF (KEK) : test resolution, try different analysis methods, BPM stability tests, multi bunch operation, advanced electronics techniques, inclination of beam in BPMs.

-> spectrometer aspects of BPMs can be tested ESA@SLAC : test stability and operational issues with a full implementation of 4 magnet chicane and 3 BPM stations

-> test of real chicane prototype

ESA at SLAC (as seen by GoogleEarth)

T474/T491 - ESA@SLAC

Collaboration with LBNL (Y. Kolomensky et al.), SLAC (M. Woods et al.) and Notre Dame (M. Hildreth et al.)

- [>] January test run 2006 (4 days) : Commissioning of BPMs 31,32 and 1,2 upstream
- April run 2006 (2 weeks) :
 - Commissioning of new cold linac prototype triplet (BPM 3,4,5), where BPM4 on x,y mover system
 - Commissioning of old SLAC BPMs (9,10,11)
 - Digitisation/signal processing optimization
- > July run 2006 (2 weeks) :
 - Commissioning of interferometer system (BPMs 3,4,5) + energy BPM24 upstream
 - Further optimisation of hardware
 - Stability data taking with 10 BPMs, frequent calibrations

The setup in the End Station

<image>

- ~ 700 nm in new cold LINAC prototype cavities, designed by Z. Li & C. Adolphsen
- ~ 350 nm in old SLAC cavities
- Systematics under investigation
- Improving calibration routine

How do these BPMs work... nutshell-ish ?

Our own spectrometer BPM prototype

Existing BPM designs not optimal for an energy spectrometer

- aperture (machine protection, resolution)
- resolution, stability
- monopole rejection
- coupling -> decay time (multi bunch)
- Take know-how gained from collaborating with others and design BPM of our own, suitable for energy spectrometer
- Al prototype by UCL workshop
- Cu vacuum beam MSSL

Spectrometer simulation

- Impact of the chicane on the optics of the beam ?
- Where does the synchrotron radiation go ?
- General opertional issues...
- Emittance growth, energy bandwidth of system ?
- ۹...

Simulation in GEANT4, BDSIM and MAD Developing core, platform independent library for BPM analysis & simulation

Future plans

- Continue to develop Top Monte Carlo generator
- Further contributions to NanoBPM & ESA work : spectrometer related studies, data-analysis...
- Commission BPM vacuum prototype in January in ESA beam line and develop full triplet the coming years...
- Simulation work : full simulation of chicane, BPMs, digitization and analysis

• And in the end...

Go to GDE and say :

"Look guys, here's a 'little' spreadsheet with what you need for a BPM spectrometer, this is how you build it, these are the systematics involved and this is how it's measurements will impact the physics output of the ILC."

Possible PhD projects...

- Physics analysis
 - Other thresholds e.g. SUSY, W⁺W⁺, Higgs,...
 - Energy measurement essential for all of these !
- BPM spectrometer
 - UCL developing BPM triplet system
 - Plenty of opportunities : electronics, simulations, data-analysis, beam tests
- Linear Collider
 - Integration of spectrometer into beam delivery system
 - Exposure to advanced beam instrumentation
 - Real hardware experience

Accelerator being designed now, PhDs on this project can Significantly influence design & operation

Thank you :-)

http://www.hep.ucl.ac.uk/lc/ http://www.hep.ucl.ac.uk/~bino/T474/ http://www.hep.ucl.ac.uk/~liapine/ http://www.hep.ucl.ac.uk/~sboogert/