Computed tomography

From UCL HEP PBT Wiki

Jump to: navigation, search
m
Line 1: Line 1:
== <span style="color:#000080"> Introduction </span> ==
== <span style="color:#000080"> Introduction </span> ==
-
This tutorial is based on the GEANT4 DICOM example originally developed by Louis Archambault, Luc Beaulieu and Vincent Hubert-Tremblay. In this example a list of DICOM files (.dcm) are converted to ASCII files (.g4dcm) and binary (.g4bin) that can be read by GEANT4. Each of these files corresponds to a Z slice. Then, the .g4dcm (.g4bin) files are merged into one unique volume and used by GEANT4 to construct patient geometry and materials.
+
This tutorial is based on the GEANT4 DICOM example originally developed by Louis Archambault, Luc Beaulieu and Vincent Hubert-Tremblay. In this example a list of DICOM files (.dcm) are converted to ASCII files (.g4dcm) and binary files (.g4bin) that can be read by GEANT4. Each of these files corresponds to a Z Computed tomography (CT) slice. Then, the .g4dcm (.g4bin) files are merged into one volume.  
-
The geometry is constructed by voxelizing the volume. There are four navigation algorithms used to create the voxel geometry: '''G4RegularNavigation''', '''G4VNestedParameterisation''', '''G4SmartVoxel'''/'''G4VoxelNavigation''' and '''G4PVReplica'''.   
+
The geometry is constructed by voxelizing this volume. There are four navigation algorithms used to create the voxel geometry: '''G4RegularNavigation''', '''G4VNestedParameterisation''', '''G4SmartVoxel'''/'''G4VoxelNavigation''' and '''G4PVReplica'''.   
-
The material is constructed by converting the pixel values (Hounsfield numbers) from the DICOM images to densities using  
+
The material for this volume is constructed by converting the pixel values (Hounsfield numbers) from the DICOM images to densities using the [http://www.hep.ucl.ac.uk/pbt/RadiotherapyWorkbook/skins/common/images/DICOM/CT2Density.dat Hounsfield scale]. Then, the densities are converted to material types according to this [http://www.hep.ucl.ac.uk/pbt/RadiotherapyWorkbook/skins/common/images/DICOM/Materials.txt table].
-
the [http://www.hep.ucl.ac.uk/pbt/RadiotherapyWorkbook/skins/common/images/DICOM/CT2Density.dat Hounsfield scale]. Then, the densities are converted to material types according to this [http://www.hep.ucl.ac.uk/pbt/RadiotherapyWorkbook/skins/common/images/DICOM/Materials.txt table].
+
A simple monenergetic electron beam is simulated using '''G4ParticleGun''' class. The output of the tutorial is a text file with dose deposition in several voxels. The dose is scored using classes '''G4MutiFunctionalDetector''', '''G4VPrimitiveScorer''', '''G4PSDoseDeposit3D''' and '''G4THitsMap'''.  
A simple monenergetic electron beam is simulated using '''G4ParticleGun''' class. The output of the tutorial is a text file with dose deposition in several voxels. The dose is scored using classes '''G4MutiFunctionalDetector''', '''G4VPrimitiveScorer''', '''G4PSDoseDeposit3D''' and '''G4THitsMap'''.  

Revision as of 12:17, 1 September 2014

Personal tools