High-precision dosimetry

From UCL HEP PBT Wiki

Jump to: navigation, search
m
m
Line 3: Line 3:
This tutorial is based on the [http://geant4-dna.org/ Geant4-DNA project] tutorials. We chose to show three of the examples:
This tutorial is based on the [http://geant4-dna.org/ Geant4-DNA project] tutorials. We chose to show three of the examples:
-
* <span style="color:#ff0000"> dnaphysics </span>: This example simulates track structures in 100-micron side cube made of liquid water. The physics processes are defined using class '''G4EmDNAPhysics'''. [http://geant4-dna.in2p3.fr/styled-3/styled-8/index.html Here] you can find more information about the different physics process that are used to build class '''G4EmDNAPhysics''' . [http://geant4-dna.in2p3.fr/styled-3/styled-9/index.html Here] you can find how to build your own '''G4EmDNAPhysics''' class. Electron beam is simulated using class '''G4ParticleGun''' and is shot from the center of the cube. The output of this tutorial is a root ntuple with type of particle, type of process, energy deposit and energy loss for every simulation step.   
+
* <span style="color:#ff0000"> dnaphysics </span>: This example simulates track structures in 100-micron side cube made of liquid water. The physics processes are defined using class '''G4EmDNAPhysics'''. [http://geant4-dna.in2p3.fr/styled-3/styled-8/index.html Here] you can find more information about the different physics process that are used to build class '''G4EmDNAPhysics''' . [http://geant4-dna.in2p3.fr/styled-3/styled-9/index.html Here] you can find how to build your own '''G4EmDNAPhysics''' class. Simulated is a an electron beam using class '''G4ParticleGun'''. The beam is shot from the center of the cube. The output of this tutorial is a root ntuple with type of particle, type of process, energy deposit and energy loss for every simulation step.   
-
* <span style="color:#ff0000"> dnageometry </span>: This example simulates track structures of different charged particles within a simplified geometrical model of the DNA molecule in a cell nucleus. Proton beam is simulated using class '''G4ParticleGun'''. The output is a root ntuple with type of particle, type of process, energy deposit and energy loss for every simulation step.  
+
* <span style="color:#ff0000"> dnageometry </span>: This example simulates track structures of different charged particles within a simplified geometrical model of the DNA molecule in a cell nucleus. Proton beam is simulated using class '''G4ParticleGun'''. The physics processes are defined using class '''G4EmDNAPhysics'''. The output is a root ntuple with type of particle, type of process, energy deposit and energy loss for every simulation step.  
* <span style="color:#ff0000"> microbeam </span>: This example simulates the cellular irradiation beam line installed on the [http://www.cenbg.in2p3.fr/-AIFIRA-Home-?lang=en AIFIRA] electrostatic accelerator facility located at [http://www.cenbg.in2p3.fr/ CENBG], Bordeaux-Gradignan, France. This accelerator is mainly used to investigate the effects of low dose irradiation on living cells. A realistic cell phantom is obtained from confocal microscopy and from ion beam anlysis techniques. Alpha particles of 3 MeV are incident on this phantom. The output is dose deposited in the cell cytoplasm and in the cell nucleus.  
* <span style="color:#ff0000"> microbeam </span>: This example simulates the cellular irradiation beam line installed on the [http://www.cenbg.in2p3.fr/-AIFIRA-Home-?lang=en AIFIRA] electrostatic accelerator facility located at [http://www.cenbg.in2p3.fr/ CENBG], Bordeaux-Gradignan, France. This accelerator is mainly used to investigate the effects of low dose irradiation on living cells. A realistic cell phantom is obtained from confocal microscopy and from ion beam anlysis techniques. Alpha particles of 3 MeV are incident on this phantom. The output is dose deposited in the cell cytoplasm and in the cell nucleus.  

Revision as of 15:11, 1 September 2014

Personal tools