|
|
Line 100: |
Line 100: |
| | style="text-align: center;" | | | | style="text-align: center;" | |
| |- | | |- |
- | | style="text-align: center;" | 01
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -140
| |
- | | style="text-align: center;" | 160 pA / ~10 kHz
| |
- | | style="text-align: center;" | 2 mm
| |
- | | style="text-align: center;" | run01_2mmCol_160pA_trig140mV
| |
- | | style="text-align: center;" | 2mmCol_160pA_30s_Run1
| |
- | | style="text-align: center;" | Actual beam current rose to 240 pA then 270 pA
| |
- | |-
| |
- | | style="text-align: center;" | 02
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -70
| |
- | | style="text-align: center;" | 260 pA
| |
- | | style="text-align: center;" | 2 mm
| |
- | | style="text-align: center;" | run02_2mmCol_260pA_trig70mV
| |
- | | style="text-align: center;" | 2mmCol_260pA_30s_Run2
| |
- | | style="text-align: center;" |
| |
- | |-
| |
- | | style="text-align: center;" | 03
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -40
| |
- | | style="text-align: center;" | 260 pA
| |
- | | style="text-align: center;" | 2 mm
| |
- | | style="text-align: center;" | run03_2mmCol_260pA_trig40mV
| |
- | | style="text-align: center;" | 2mmCol_260pA_30s_Run3
| |
- | | style="text-align: center;" | Beam current ~160 pA
| |
- | |-
| |
- | | style="text-align: center;" | 04
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -140
| |
- | | style="text-align: center;" | 1 nA
| |
- | | style="text-align: center;" | 2 mm
| |
- | | style="text-align: center;" | run04_2mmCol_1nA_trig140mV
| |
- | | style="text-align: center;" | 2mmCol_1nA_30s_Run4
| |
- | | style="text-align: center;" | Beam current ~1.2 nA
| |
- | |-
| |
- | | colspan="8" style="text-align: center;" | Test: HV reduced to -800 V, lights on, no increase in PMT current. Lights off for further beam runs.
| |
- | |-
| |
- | | style="text-align: center;" | 05
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -140
| |
- | | style="text-align: center;" | 220 pA
| |
- | | style="text-align: center;" | 2 mm
| |
- | | style="text-align: center;" | run05_2mmCol_220pA_trig140mV_1mmPE
| |
- | | style="text-align: center;" | 2mmCol_220pA_30s_Run5
| |
- | | style="text-align: center;" | 1 mm polyethylene cover on collimator
| |
- | Beam current rose to ~260 pA
| |
- | |-
| |
- | | style="text-align: center;" | 06
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -140
| |
- | | style="text-align: center;" | 160 pA
| |
- | | style="text-align: center;" | 2 mm
| |
- | | style="text-align: center;" | run06_2mmCol_160pA_trig140mV_1mmPE
| |
- | | style="text-align: center;" | 2mmCol_160pA_30s_Run6
| |
- | | style="text-align: center;" | 1 mm polyethylene cover on collimator
| |
- | Beam current rose to ~230 pA
| |
- | |-
| |
- | | style="text-align: center;" | 07
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -140
| |
- | | style="text-align: center;" | 10 pA / ~30 kHz
| |
- | | style="text-align: center;" | 5 mm
| |
- | | style="text-align: center;" | run07_5mmCol_10pA_trig140mV
| |
- | | style="text-align: center;" | 5mmCol_10pA_30s_Run7
| |
- | | style="text-align: center;" | No polyethylene
| |
- | Beam current rose to ~30 pA
| |
- | |-
| |
- | | style="text-align: center;" | 08
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -140
| |
- | | style="text-align: center;" | 10 pA
| |
- | | style="text-align: center;" | 5 mm
| |
- | | style="text-align: center;" | run08_5mmCol_10pA_trig140mV
| |
- | | style="text-align: center;" | 5mmCol_10pA_30s_Run8
| |
- | | style="text-align: center;" | Repeat run for run 07
| |
- | |-
| |
- | | style="text-align: center;" | 09
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -140
| |
- | | style="text-align: center;" | 10 pA
| |
- | | style="text-align: center;" | 5 mm
| |
- | | style="text-align: center;" | run09_5mmCol_10pA_trig140mV_1mmPE
| |
- | | style="text-align: center;" | 5mmCol_10pA_30s_Run9
| |
- | | style="text-align: center;" | 1 mm polyethylene cover on collimator
| |
- | Beam spot moved - polyethylene cover slipped, 'cyclops' beam
| |
- | Beam current ~8 pA
| |
- | |-
| |
- | | style="text-align: center;" | 10
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -140
| |
- | | style="text-align: center;" | 10 pA
| |
- | | style="text-align: center;" | 5 mm
| |
- | | style="text-align: center;" | run10_5mmCol_10pA_trig140mV_1mmPE
| |
- | | style="text-align: center;" | 5mmCol_10pA_30s_Run10
| |
- | | style="text-align: center;" | Repeat run for run 09
| |
- | Peak beam current 15 pA
| |
- | |-
| |
- | | style="text-align: center;" | 11
| |
- | | style="text-align: center;" | -900
| |
- | | style="text-align: center;" | -140
| |
- | | style="text-align: center;" | 10 pA
| |
- | | style="text-align: center;" | 5 mm
| |
- | | style="text-align: center;" | run11_5mmCol_10pA_trig140mV_1mmPE_HalfCover
| |
- | | style="text-align: center;" | 5mmCol_10pA_30s_Run11
| |
- | | style="text-align: center;" | 1 mm polyethylene half-cover on collimator
| |
- | Beam current ~8 pA
| |
| |} | | |} |
Beam tests of the single module with PRaVDA Silicon strip tracker with trigger pulse output at the Birmingham Cyclotron with a 36 MeV beam.
Item
| Notes
|
Single Module Scintillator Block
| 3cm x 3cm x 5cm standard scintillator block. Optical gel required to couple Scintillator to PMT
|
Photomultiplier Tube
| Hamamatsu R13089 2"
|
Portable Enclosure
| Modified Peli 1510 Waterproof Wheeled Equipment Case.
230 x 555 x 350mm
Features mount for scintillator and PMT, opening for beam, and ports for SHV, BNC, and SMA cables.
Mylar window with Al support mounted to internal face: approximately light-tight.
BNC output from case connected to SMA switcher [INSERT DETAILS]
|
LeCroy HDO6104 Oscilloscope
| Records PMT output, connected via SMA-BNC conversion.
|
Caen DT5751 Digitiser
| Records PMT output, connected via SMA-MCX conversion. Used channel 3.
|
DAQ Laptop
| Controls Caen HV supply; records data from Caen digitiser.
|
Caen NDT1470 HV Supply
| Supplies HV to PMT
|
PRaVDA Strip Tracker
| PRaVDA Unit A, 3x150um Si strip sensors with 90.4um strip pitch. Firmware version update to yield square pulse out when 2 or 3 layers have a strip over threshold per read out cycle
|
Control Laptop x 3
| Two used for Remote Desktop control of LeCroy Oscilloscope and DAQ Laptop. Third used for taking down notes.
|
Ethernet Switcher
| Set in experiment room and connected LeCroy Oscilloscope and DAQ laptop. Output sent to control room Network Hub.
|
Network Hub
| Set in control room to take output from ethernet switcher. Control laptops connected via ethernet or 5GHz WiFi.
|
Ethernet Cable x 3
| To connect 1 control laptop, the LeCroy HDO6104 and DAQ Laptop to their respective network hubs.
|
Ethernet Cable
| To connect control Network Hub to Ethernet Switcher.
|
Male-to-Male SMA Cable
| Signal from enclosure port to Splitter
|
DC-4200 MHz Signal Splitter
| Splits SMA signal to two SMA signals – sent to Oscilloscope and Digitiser.
|
Male SMA to Male BNC cable
| Sends 1 output from splitter to Oscilloscope.
|
Male SMA to Male MCX cable
| Sends 1 output from splitter to Digitiser
|
USB Cable
| Caen HV unit to DAQ Laptop
|
Gloves
| For handling scintillator
|
Optical gel
| For coupling scintillator to PMT
|
Wipes
| For removing optical gel
|
Calorimeter files currently located at /unix/pbt/users/dwalker/data/birm_21.02.18 on UCL HEP plus1 server.