Build-up redefinition & liquid Hydrogen simulation

Laurent Kelleter 16/08/2017

Old definition

- Old build-up definition based on Bragg fit to curve
- With the extension of energies up to 500MeV, this model breaks down completely
- To keep a consistent model, it has to be changed

500 MeV

Bragg peak evolution with beam energy

Electron dose evolution with beam energy

Sec. Proton dose evolution with beam energy

New definition

- Define build-up as difference between the dose in entrance region and the dose at the plateau (immediately following build-up region)
- In order to get a cleaner signal, use energy deposition distribution of secondary particles (electrons/protons)
- Define build-up with respect to depth at 0.07 mm (clinical relevance)

Normalisation

Then there are three options to normalise the build-up:

- Don't normalise the build-up (so build-up is in units of energy deposition)
 - Advantage: Absolute value of build-up
 - Disadvantage: Lack of context
- Normalise to dose in entrance region
 - Advantage: Like old definition, giving the percentage of the missing energy deposition compared to situation with no build-up effect
 - Disadvantage: Reference dose not clearly defined
- Normalise to dose at Bragg peak
 - Advantage: Provides context with respect to dose that one wants to deliver to the tumour
 - Disadvantage: makes build-up look bigger than it is as it scales with the longitudinal smearing of the Bragg peak

Build-up (absolute value)

Build-up (reference to entrance dose)

! this is probably the most meaningful definition

Build-up (reference to maximum dose)

95%-threshold

- Attempt to quantify the extent of the build-up region in function of beam energy
- As reference dose use
 - Plateau of electron dose for electron threshold
 - Maximum of sec. proton dose for hadronic threshold

Liquid hydrogen: Bragg peak

Liquid hydrogen: Secondary protons

Liquid hydrogen: Energy deposition

Liquid hydrogen: Particle production

Bragg peak due to lack of neutrons