Characterisation of the Clatterbridge beamline simulation

11/01/2017 Matthieu Hentz

Updated the beamline construction:

• Moved the second dose monitor to check if it has an impact on the beam

Ran simulations to check flux and energy distribution after scattering components:

- Simulation now split into 100 simulations of 10,000 events. Takes about 30 minutes with narrow beam and about 5 minutes with wider beam (more protons lost more quickly).
- Lateral proton flux values as expected.
- Energy spectrum and spatial distribution at the nozzle look as expected.

Original beamline - DetectorConstruction.cc

Corrections to DetectorConstruction.cc

Top-down view.

The 2nd dose monitor was placed a short distance behind the 1st dose monitor to investigate the former's impact on the beam.

Flux scorers

The following graphs show the spatial distribution of protons in the beam after a selection of highly scattering components.

The simulations were carried out with a monoenergetic beam to check the spatial and energetic distributions at several locations. Using a narrow beam, fewer protons are lost at the first collimator allowing for better statistics since more protons are detected. Then simulations were carried out with a wider beam to investigate how much each component blocks the beam in more realistic circumstances.

Narrow beam

Monoenergetic 62.5 MeV Uniform radial distribution, Circle radius 3 mm, type plane

The beam is cut by almost 50% when it hits the brass stopper. By the time it reaches the nozzle only about 12.5% of the beam remains.

Wider beam

Gaussian distributed 62.5 MeV, sigma 0.082 MeV Uniform radial distribution (?), Circle radius 3 mm, sigma x 0.0134 m, sigma y 0.00362 m, type beam -> The above line needs checking.

Flux scorers narrow beam

Source, z = 1 cm

Kapton window, z = 35.654 cm

Not sure yet why the stats box is identical for both...

Flux scorers narrow beam

After first aluminium box, z = 67.6 cm

Collimator 2, z = 114.5 cm

Flux scorers narrow beam

Nozzle, z = 175.9 cm

Flux scorers wide beam

Source, z = 1 cm

Collimator 1, z = 5 cm

Not sure yet why the stats box is identical for both...

Flux scorers wide beam

Kapton window, z = 35.654 cm

After first aluminium box, z = 67.6 cm

Flux scorers wide beam

Collimator 2, z = 114.5 cm

Nozzle, z = 175.9 cm

narrow beam at source

narrow beam at nozzle

60 MeV mean energy as expected at the nozzle

wide beam at source

wide beam at nozzle

60 MeV mean energy as expected at the nozzle

