

Proton Calorimetry: from SuperNEMO to Proton Therapy

Simon Jolly, Ruben Saakyan, Anastasia Basharina-Freshville, Laurent Kelleter University College London

Proton Beam Therapy

- Unlike X-rays, charged particles stop!
- Electrons, being lighter, scatter and spread out.
- Protons deposit most dose at the *end* of their path: the *Bragg Peak*.

- This property is both the advantage and the disadvantage of proton therapy.
- Protons stop, but you need to know where...

Proton Beam Therapy QA

- A range of QA checks are necessary for safe PBT treatment:
 - Daily.
 - Weekly.
 - Monthly.
- Daily checks carried out before treatment:
 - Most time spent verifying range is correct for given energy.

- These range QA checks can take more than an hour for a few measurements.
- Equipment is bulky and slow (setup or measurement).
- A better detector should make the same measurements more quickly and more accurately...

Range Errors

- Requires an increase in imaging resolution compared to X-ray based systems due to localisation of proton dose delivery
- Currently use a conversion factor to convert from X-Ray to proton therapy treatment plans → imprecision and range uncertainty
- Currently, the patient is imaged away from the treatment any movement of the patient's anatomy introduces further imprecision

Simon Jolly, University College London

Proton Calorimetry

- Calorimetry approach for measuring range for QA:
 - Measure energy and convert to range using a single scintillator + PMT
 - Measure range directly using a segmented scintillator with a readout on every slice
 - Both methods aim to reduce QA times to 2-3 minutes, are affordable and can have short setup times
- Proton imaging:
 - Image with > 300 MeV proton beam, which will emerge from the body without significant energy deposition
 - Tomography approach:
 - A series of tracking layers upstream and downstream of the patient
 - Accurate calorimeter for energy measurements
 - Target energy resolution: $\sim 1\% \sigma$ for 300 MeV imaging protons

SuperNEMO

- Neutrinoless double beta decay detector using NEMO3's tracker-calorimeter technique Target sensitivity: T_{1/2} > 10²⁶ years → <m_y> <0.04 – 0.1 eV
- Modular detector with a planar geometry
- 1 module (of 20) consists of:

Source foil:

- 5 kg (total of 100 kg) of 40 mg/cm² (4 x 2.7 m²) - ⁸²Se (high $Q_{\beta\beta}$, long $T_{1/2}^{2\nu\beta\beta}$, proven enrichment technology): starting baseline

- ¹⁵⁰Nd and ⁴⁸Ca being considered depending on enrichment possibilities

Tracker: ~2000 drift cells in Geiger mode → particle identification (for background suppression)

Calorimeter: ~550 scintillator blocks + PMTs \rightarrow energy and time of flight measurements of particles

Passive shielding surrounding each module

calorimeter)

From NEMO3 to SuperNEMO

• Energy resolution is one of the main challenges (factor of 2 improvement):

- SuperNEMO scintillator has to be organic plastic scintillator (high light yield, low electron back-scattering, high radiopurity, fast timing) → Can 3% σ at 1 MeV be reached for organic solid plastic scintillator?
- First step in SuperNEMO R&D: secured STFC funding for energy resolution R&D

Simon Jolly, University College London

Energy Resolution

σ	sigma of distribution
E N _{pe}	mean of distribution number of photo-electrons
N _{ph} /E _{e.}	number of photons per unit energy
ε ^{light}	light collection efficiency
Q E ^{PMT}	quantum efficiency of the photo-cathode
ε ^{ρΜΤ}	PMT collection efficiency

scintillator light output

Physically translates to:

- Scintillator: material, surface treatment, geometry
- Reflector: material, reflectivity coefficient, specular/diffusive
- Optical coupling quality: material, geometry, light guides
- Photomultiplier Tubes (PMTs): quantum efficiency (QE), collection efficiency, gain of the first dynode

Simon Jolly, University College London

Combined in an "optical module":

scintillator wrapped in reflective material coupled to a PMT

SuperNEMO Calorimeter Test Bench

Excite scintillator with a monochromatic electron source (approximates the delta function) \rightarrow any smearing of distribution is due to detector properties

UCL:

- ²⁰⁷Bi source: 976 keV and 482 keV K-shell conversion electrons
- Fit: deconvolution of X-rays, γs, L-shell and M-shell conversion electrons

Bordeaux:

- ⁹⁰Sr spectrometer: ⁹⁰Sr beam passed through a magnetic field to select monochromatic electrons of known energy
- Fit: Gaussian

Simon Jolly, University College London

Calorimeter R&D: Simulations

- Full calorimeter simulations:
 - GENBB event generator
 - Physics simulations with GEANT4 (optical photon transport in scintillator detectors)
- The model accounts for wavelength dependence of optical properties, all of which have been experimentally measured, of the:
 - scintillators (self absorption and re-emission)
 - reflective wrappings
 - photomultipliers (QE)
 - optical coupling materials
 - refractive index of optical materials

 For further details see: "Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors" <u>https://doi.org/10.1016/j.nima.2010.09.027</u>

Simon Jolly, University College London

Calorimeter R&D: Scintillators

Block shape studies:

5 mm diameter
th 12 mm minimum depth
90mm ²
90mm ² with tapered sides

• Material: polystyrene (PST) vs. polyvinyl toluene (PVT)

Material	$\Delta E/E(\%)$	$f_{ m FWHM}$	Material	$\Delta E/E(\%)$	fewiim
JINR NEMO-3 PS	8.9 ± 0.2	1	NULLIA DO	20,00	JEWHM
Elien-200 PVT	8.3 ± 0.2	1.07 ± 0.03	NUVIA PS	7.9 ± 0.2	1
Elion-204 PVT	78 ± 0.2	1.01 ± 0.03 1.14 ± 0.03	Enhanced NUVIA PS	7.6 ± 0.2	1.04 ± 0.03
Enjen-204 I V I	1.0 ± 0.2	1.14 ± 0.00			

- Close collaboration with manufacturers (JINR Dubna, ISM Kharkiv, NUVIA, ELJEN) for contents of:
 - PPO scintillating agent
 - POPOP wavelength shifter
- Surface finishing: polished vs. depolished
 - All surfaces depolished (machine finish), with the face with the hemispherical cutout polished

Simon Jolly, University College London

11

m

Calorimeter R&D: PMTs (1)

• Photocathode QE:

- Bi-alkali alloy development for photocathode material has achieved QE > 40%
- Selection of PMT to optimise QE to the emission spectra of the scintillator

- tube):
 - Number of dynode stages reduced from 10 to 8
 - Voltage divider optimisation
 - Improved from <70% to ~80%

Simon Jolly, University College London

Calorimeter R&D: PMTs (2)

• Photocathode uniformity:

 Close collaboration with Hamamatsu to improve photocathode uniformity across the entire surface of the R5912-MOD PMT

- Timing:
 - Reducing the number of dynode stages improves the timing of the PMT by reducing the time transition spread (TTS)
- Gain and Linearity (a big achievement!):
 - Reducing the number of dynode stages and optimising the voltage divider decreases the gain: ~1 x 10⁵

 \rightarrow Good linearity (< 2% for very high light levels – 50 mA peak current) whilst good gain of the 1st dynode and therefore high collection efficiency

Reflective Material & Coupling

collection

		Optical Material	Refractive Index	$\Delta E/E(\%)$	$f_{ m FWHM}$	•
– Dire resc	ect co olutic	Isopropanol alcohol Cargille gel Cargille gel RTV 615	1.37 1.46 1.52 1.41	9.4 ± 0.2 8.6 ± 0.2 8.4 ± 0.2 9.4 ± 0.2	$1 \\ 1.09 \pm 0.04 \\ 1.12 \pm 0.04 \\ 1.00 \pm 0.03$	in energy

m

Reflective Material & Coupling

Reflective material: High reflectivity, radiopure, low Z and low density (to reduce backscattering)

- Optical coupling:
 - Good optical coupling between scintillator and PMT essential for uniform and complete light collection

Optical Material	Refractive Index	$\Delta E/E(\%)$	$f_{ m FWHM}$
Isopropanol alcohol	1.37	9.4 ± 0.2	1
Cargille gel	1.46	8.6 ± 0.2	1.09 ± 0.04
Cargille gel	1.52	8.4 ± 0.2	1.12 ± 0.04
RTV 615	1.41	9.4 ± 0.2	1.00 ± 0.03

 Direct coupling of PMT to hemispherical cutout in scintillator gave the biggest impact in energy resolution improvement.

Calorimeter R&D: Summary

• For further details, see:

"Calorimeter development for the SuperNEMO double beta decay experiment" https://doi.org/10.1016/j.nima.2017.06.044

16

Â

Optimised Optical Module Design

EJ-200 hexagonal PVT block:

276 mm diameter193 mm deep, minimum thicknessbetween PMT and scintillator:100 mm

R5912-MOD Hamamatsu 8" PMT:

Maximum quoted QE: 33% 32% QE at 400 nm

Wrapping:

Sides: 75 µm of PTFE (Teflon) ribbon Sides and entrance face: 12 µm of Mylar

What About Proton Therapy...?

- With this fantastic energy resolution of 3.2% σ at 1 MeV can we apply the SuperNEMO optical module technology to proton therapy beam monitoring and proton imaging?
 - **Challenges**: from SuperNEMO (electrons) to a proton beam
- Very high intensity of events at a proton beam (~10 GHz):
 - Random number of protons per bucket from beam, we require 1 proton per bucket
 - Pile up!
- Scintillator quenching for protons:
 - For a plastic scintillator, the scintillator response is nonlinear with the amount of energy deposited in it
 - Amount of deviation → "quenching"
 - Characterised by Birk's law:

$$\frac{dY}{dx} = \frac{S}{1 + kB(dE/dx)} \times \frac{dE}{dx}$$

- dY/dxlight yield per unit path lengthdE/dxenergy lost by particle per unit path
lengthkBrelates density of ionisation to energy
loss = 0.207 mm/MeVSabsolute scintillation efficiency
- Becomes important for large dE/dx and ionisation density → important for protons, which have a large dE/dx when they slow down
- Energy range:
 - SuperNEMO optimised for electrons from 0.5 4 MeV for double beta decay
 - For proton therapy we require ~O(100 MeV)

Simon Jolly, University College London

- A 60 MeV proton beam simulated, positioned 30 cm before the entrance face of the scintillator block
 - Proton beam has been run through the Clatterbridge beamline
- Scintillator geometry and composition fully described
- Quenching of scintillation light in plastic scintillator for protons
- Energy deposited smeared according to Poissonian fluctuations in the number of generated photo-electrons
- The number of photo-electrons per MeV taken from test bench data (SuperNEMO calorimeter R&D): 982 photo-electrons per MeV (for an energy resolution of 3.2% σ at 1MeV).

01/02/18

20

- Quenching from simulations:
 - Simulated mean: 39.2 MeV
 - Quenching: 35% for 60 MeV protons

- Energy resolution from simulations:
 - σ: 0.252, μ: 39.21
 - σ/Ε: <mark>0.64 %</mark> σ

Simon Jolly, University College London

Simon Jolly, University College London

01/02/18

Simulated Stopping Distance

• Simulations of SuperNEMO scintillator vs Water Equivalent:

Proton Beam Energy, MeV	Mean stopping distance, SCINT (mm)	Mean stopping distance, WATER (mm)	σ stopping distance, SCINT (mm)	σ stopping distance, WATER (mm)
60	30.21	30.54	0.33	0.33
200	255.4	257.1	2.48	2.44
300	505.9	509.9	4.64	4.78

- PolyVinyl Toluene is "water equivalent" for stopping distance and spread, as is Polystyrene.
- One to one conversion for water phantoms.
- We can take advantage of this for range QA measurements: water equivalent + high light output + excellent energy resolution

Step 2: Equipment Setup

Simon Jolly, University College London

m

Step 3: ²⁰⁷Bi Test at UCL

- Optical module resurrected after some years: re-measure energy resolution!
 - New test bench at UCL: a thin scintillator introduced into set up, which triggers DAQ only when an electron passes through it
 - → Gammas removed, fit simplified to triple Gaussian of 976 keV and 482 keV peaks

- 62 MeV Scanditronix cyclotron provides 60 MeV protons (31 mm in water) to treatment room through double scattering.
- Beam time provided for research.
- We've had 2-day shifts every few months.
- Already made interesting observations with our equipment about the treatment beam...

- Need much lower proton fluence for our measurements than clinical settings.
- Rate reduction achieved through:
 - Various collimators (0.5–10 mm)
 - lon source gas supply.
 - lon source discharge current.
 - Cyclotron sector focussing.
 - RF phasing (wouldn't recommend it...).

Simon Jolly, University College London

Step 4: Clatterbridge Cancer Centre **UC**²⁷

Simon Jolly, University College London

- The proton rate from the beam was carefully controlled by
 - Inserting brass collimators with varying diameters (0.5 mm – 10 mm) into the beam nozzle (~30 cm upstream of the optical module)
 - Adjustment of the ion source gas supply
 - Adjustment of the ion source discharge current

Resulting distribution:

Simon Jolly, University College London

ADC Distribution: 800 V, 2 mm collimator, 100 ns gate

Our simulations accurately represent our data!

Simon Jolly, University College London

Step 5: Smaller and Faster

- We have already achieved the target energy resolution: 0.7 % σ
- But, at rates > 250 kHz we start to see pile up
- The next step is to do this for very high rates of 1– 10 MHz with a compact design:
 - Reduce the size of the PMT and the scintillator to improve timing and make the design nozzle-mountable
 - VE HV PMT base to remove decoupling capacitor (not fast enough discharge)

2" Hamamatsu R13089-100-11 PMT with negative HV active divider base

3 cm x 3 cm x 5 cm cuboid ENVINET/NUVIA PolyStyrene standard scintillator

- Coupled with BC-630 Saint Gobain silicone optical gel
- Wrapped in 75 µm of PTFE (Teflon) ribbon on the sides and 12 µm of Mylar on the sides and entrance face

Step 5: Smaller and Faster

Resolution Dependence on Energy

 Energy of protons incident on scintillator varied by placing absorbers (PMMA plates and calibration wheel) of known thickness ~1.8 m upstream of the optical module

Energy Resolution as a Function of Proton Energy: -900 V

Linearity (-900 V)

- We want to run the PMT at higher voltages (can run at up to 1500V) as this will increase the PMT's collection efficiency and will improve the energy resolution
- BUT we have a LOT of light (tens of thousands of photo-electrons) so we need to make sure we are not saturating the PMT
 - Look at linearity

Proton Energy as a Function of ADC Mean: -900V

Clatterbridge Beam Uniformity

0.5 mm Ø collimator

- Uniform 8 mm away from the centre
- 16 mm away from the centre is 1mm away from the beam edge
 - Currently trying to understand these edge effects
- Okay to use collimators to reduce rates!

Radiation Damage

• Total estimated radiation dose received by 2" OM: 0.25 Gy

• No noticeable difference in resulting energy resolution so far.

MedAustron 250 MeV Tests

- Having tested detector at 60 MeV, needed to make high energy test to examine performance and test linearity:
 - Longer, 40 cm scintillator block to absorb 250 MeV protons.
 - Same PMT and readout.

- 62 MeV up to 252 MeV.
- Able to drop rate down with chopper adjustment: ran 1 kHz–1 MHz.
- Custom collimators to reduce intensity and beam size.

MedAustron Setup

Simon Jolly, University College London

MedAustron Results

⁴⁰

MedAustron Results

^AUCL

Proton Energy, MeV

PMT Currents

- When considering a PMT, there are two main currents to consider:
 - The DC current running through the resistor chain, I^{divider} (also know as the "bleeder" current).
- The average anode current, I^a_{av}, which is the current caused by the avalanche of electrons and travels in the opposite direction to I^{div}.

- In order for the PMT to function correctly |^a_{av} << |^{div}!
- For the R13089-100-11 PMT with the negative Hamamatsu active divider base to function correctly: I^a_{av} < 100 µA, according to Hamamatsu specifications.
- We are exceeding this as the rate increases, leading to peak current limit: average pulse height drops with rate increase.

Single Module Summary

 An optical module inspired by the SuperNEMO experiment has measured the 60 MeV proton beam at Clatterbridge with an energy resolution of:

- And a 250 MeV proton beam at MedAustron with an energy resolution of 0.2 $\%~\sigma$
- A great result for protonCT
- But this single module isn't fast enough to handle clinical proton rates and therefore is not currently suitable for QA range verification
- Ongoing work to improve timing in collaboration with Hamamatsu
- Goal to reach 10 MHz

→ Design a segmented calorimeter to be used as a range telescope!

Simon Jolly, University College London

Segmented Calorimeter

- Segment block into slices and read out light from each slice individually.
- Integrate signal from many protons: very large output from 10¹⁰/s.
- Minimum slice width will depend on manufacture: aiming for < 3 mm.
- Use simple, stable light detection: photodiodes/pixel sensors.
- Resolution set by slice width and variation in scintillator light output.
- Light enough to be nozzle-mounted: measurements from multiple gantry angles.

Segmented Calorimeter Design

- Laurent Kelleter has built preliminary model in Geant4:
 - 2 mm slices of plastic scintillator with mylar wrapping.
 - Included quenching in Bortfeld formula: fit to light output.
- STFC IPS grant application with NUVIA a.s. in Czech Republic to produce our scintillator sheets: manufacturing challenging!
- Need to characterise light quenching to reconstruct Bragg curve: **pencil beams only**.
- Fit to measured curve drastically improves mean range measurement with estimate of spread.

S

 $\frac{dY}{dx} = \frac{S}{1 + kB(dE/dx)} \times \frac{dE}{dx}$ $\frac{dY}{dx}$ light yield per unit path length

- **dE**/ energy lost by particle per **dx** unit path length
- **kB** relates density of ionisation to energy loss = 0.207 mm/MeV

01/02/18

absolute scintillation efficiency 45

Simon Jolly, University College London

Segmented Calorimeter Tests

- Carried out beam tests of 2 sheet prototype of segmented calorimeter:
 - 3 mm and 4 mm Nuvia plastic scintillator sheets.
 - PRaVDA Priapus MAPS pixel sensor (10 cm x 5 cm).
- Birmingham cyclotron provided 28 MeV proton beam with clinical fluence.

Simon Jolly, University College London

Future Plans

- Currently constructing 60 MeV prototype using:
 - 20 x 3 mm and 30 x 2 mm scintillator sheets obtained from NUVIA.

- Clinical beamline tests lined up for the near future:
 - Birmingham (36 MeV), Clatterbridge (60 MeV) and MedAustron (100 MeV).
- Look at overall performance, radiation hardness and quenching at high rates