
Buffered writing to output in
the Clatterbridge simulation
Wednesday 7 February 2018
Matthieu Hentz

1/6

Why is buffered writing required?

• When a primary particle encounters a volume over which a detector
(G4VSensitiveDetector) is defined, a hit (G4VHit) is produced
• The ProcessHits() method in the user implementation PhaseSpaceSD

of the sensitive detector stores all hits occurring in an event
(G4Event) in a collection of hits (G4THitsCollection)
• Dumping the hits at the end of every event is costly since the output

file must be opened and closed each time (both slow operations)
• For a large number of events, time wasted becomes significant
• Dumping the hits in chunks should reduce time spent opening and

closing files and speed up the simulation significantly

2/6

• Process described on the previous slide

• A run consists of a given number of events, so is a set of repetitions of the
above process
• Pointers to hits are stored in a hits collection. This leads to problems later.

Issues with buffering (1/2)

3/6

• To store hits that occurred within a run across events, a so-called
accumulator is needed. It stores hits collections corresponding to
different volumes in a std::vector.
• Need to populate the hits collections for the run at the end of each

event: put hits on volume 0 in 0th element of vector etc.
• Despite invoking a constructor every time a hit is saved in a hits

collection in the SensitiveDetector, pointers to hits are assigned the
same values over and over again (??) so many hits point to the same
address in memory
• This leads to many of the hits in the final collections having the same

values

Issues with buffering (2/2)

4/6

• Use dereference operator (*) and store values of hits in a vector of
hits which itself is stored in a vector
• Hits can then be dumped from within the accumulator class and a

parameter can be passed to choose the size of the buffer

Fixing issues by avoiding pointers

5/6

Speedup

of events No buffering Buffer 10 events Buffer 100 events Buffer 1000 events
1,000 2.53s user

7.19s sys
9.751s total

2.45s user
3.42s sys
5.900s total

2.55s user
0.82s sys
3.413s total

2.39s user
0.41s sys
2.844s total

5,000 5.41s user
33.75s sys
39.207s total

4.73s user
14.59s sys
19.349s total

4.79s user
3.08s sys
7.976s total

4.67s user
1.07s sys
5.801s total

10,000 8.99s user
66.29s sys
1:15.32s total

7.55s user
29.68s sys
37.262s total

7.29s user
5.80s sys
13.164s total

7.24s user
1.82s sys
9.167s total

In macro: printModulo 100

of events Buffer 10,000 events Buffer 100,000 events
10,000 6.29s user 1.21s sys 7.535s total
100,000 44.60s user 9.53s sys 54.180s total 48.71s user 12.05s sys 1:00.97s total

6/6

