

From SuperNEMO to Proton Therapy: Adapting SuperNEMO Calorimeter Technology for Proton Therapy QA

Anastasia Basharina-Freshville

(University College London)

PT Calorimetry

Cancer Treatment

Why Proton Therapy?

- More precise form of radiotherapy
- Precise tuning of the delivered dose to the patient through careful selection of proton beam energy
 - Due to energy loss profile of protons
 - And much smaller beam spot sizes
- Important for areas where we particularly want to avoid large doses of radiation to healthy tissue:
 - Head and neck
 - Central nervous system
 - In children

http://samhs.org.au/Virtual%20Museum/xrays/Braggs-peak-rxth/braggpeakrxth.htm

Why Proton Therapy?

- Range shifter and modulator used for a Spread Out Bragg Peak
- Alters beam energy to provide a uniform dose over the depth of the tumor

http://www.clatterbridgecc.nhs.uk/professionals/physicsdepartment/cyclotron/

SOBP

Photons vs Protons: Medulloblastoma

http://www.seattlecca.org/diseases/proton-therapy-head-neck-cancers.cfm

Photons vs Protons: Medulloblastoma

Proton Therapy Challenges (1)

- Quality Assurance (QA):
 - A number of QA checks are necessary for safe PT treatment:
 - Daily, weekly and monthly
 - Daily checks carried out before treatment:
 - Verifying that the range is correct for a given energy takes most time
 - Two methods currently used:
 - A single dose monitor to look at 3-5 different beam ranges/energies, >1 hour daily
 - "Zebra": a multi-layer ionisation chamber,
 <1 minute to acquire data

BUT: expensive, bukly and long setup times

http://www.iba-dosimetry.com/complete-solutions/ radiotherapy/particle-therapy-dosimetry/zebra-withomnipro-incline

Proton Therapy Challenges (2)

Proton imaging

- Requires an increase in imaging resolution compared to X-ray based systems due to localisation of proton dose delivery
- Currently use a conversion factor to convert from X-Ray to proton therapy treatment plans → imprecision and range uncertainty
- Currently, the patient is imaged away from the treatment any movement of the patient's anatomy introduces further imprecision

Proposed Solutions

- Calorimetry approach for:
 - Measuring range for QA:
 - measure energy and convert to range using a single scintillator + PMT
 - measure range directly using a segmented scintillator with a readout on every slice
 - Both methods aim to reduce QA times to 2-3 minutes, are affordable and can have short setup times
- Proton imaging:
 - Image with > 300 MeV proton beam, which will emerge from the body without significant energy deposition
 - Tomography approach:
 - A series of tracking layers upstream and downstream of the patient
 - Accurate calorimeter for energy measurements
 - Target energy resolution: ~1% σ for 300 MeV imaging protons

Proton Therapy in the UK

- One currently operational proton therapy centre:
 - Clatterbridge Cancer Centre: treatment of ocular melanomas with 60 MeV proton beam
- Two new high energy centres currently under construction:
 - The Christie (Manchester)
 - UCLH (London)
- £250 million joint project the largest single project the NHS has ever attempted!
- The Christie will open in August 2018 and UCLH a couple of years later.

UCLH Proton Therapy Centre

- Use a particle accelerator (cyclotron) to get a 250 MeV proton beam
- Delivered to the patient through a gantry, which has to be big enough to deliver the beam from any angle: must be 3 stories tall!
- Three gantries
- Construction in progress (summer 2015)
- First patient treatment: 2020

Can we work on some of the challenges before then?

18/01/2017

PT Calorimetry

SuperNEMO

supernemo

collaboration

2 m (assembled, ~0.5 m between source and calorimeter) •

- Neutrinoless double beta decay detector using NEMO3's tracker-calorimeter technique Target sensitivity: $T_{1/2} > 10^{26}$ years $\rightarrow < m_{v} > <0.04 - 0.1$ eV
- Modular detector with a planar geometry

1 module (of 20) consists of:

Source foil:

- 5 kg (total of 100 kg) of 40 mg/cm² (4 x 2.7 m²)
- ⁸²Se (high $Q_{\beta\beta}$, long $T_{1/2}^{2\nu\beta\beta}$, proven enrichment technology): starting baseline

- ¹⁵⁰Nd and ⁴⁸Ca being considered depending on enrichment possibilities

Tracker: ~2000 drift cells in Geiger mode \rightarrow particle identification (for background suppression)

Calorimeter: ~550 scintillator blocks + PMTs \rightarrow energy and time of flight measurements of particles

Passive shielding surrounding each module

From NEMO3 to SuperNEMO

• Energy resolution is one of the main challenges (factor of 2 improvement):

- SuperNEMO scintillator has to be organic plastic scintillator (high light yield, low electron back-scattering, high radiopurity, fast timing)
 → Can 3% σ at 1 MeV be reached for organic solid plastic scintillator?
- First step in SuperNEMO R&D: secured STFC funding for energy resolution R&D

Energy Resolution

σ	sigma of distribution
E N	mean of distribution
N _{ph} /E _{e.}	number of photons per unit energy
ε ^{light}	light collection efficiency
QEPMT	quantum efficiency of the photo-cathode
ε	PMT collection efficiency

scintillator light output

Physically translates to:

- Scintillator: material, surface treatment, geometry
- Reflector: material, reflectivity coefficient, specular/diffusive
- Optical coupling quality: material, geometry, light guides
- Photomultiplier Tubes (PMTs): quantum efficiency (QE), collection efficiency, gain of the first dynode

Combined in an "optical module":

scintillator wrapped in reflective material coupled to a PMT

SuperNEMO Calorimeter Test Bench

Excite scintillator with a monochromatic electron source (approximates the delta function) → any smearing of distribution is due to detector properties

UCL:

- ²⁰⁷Bi source: 976 keV and 482 keV K-shell conversion electrons
- Fit: deconvolution of X-rays, γs, L-shell and Mshell conversion electrons

Bordeaux:

 ⁹⁰Sr spectrometer: ⁹⁰Sr beam passed through a magnetic field to select monochromatic electrons of known energy

Fit: Gaussian

SuperNEMO Calorimeter R&D: Simulations

- Full calorimeter simulations:
 - GENBB event generator
 - Physics simulations with GEANT4 (optical photon transport in scintillator detectors)
- The model accounts for wavelength dependence of optical properties, all of which have been experimentally measured, of the:
 - scintillators (self absorption and re-emission)
 - reflective wrappings
 - photomultipliers (QE)
 - optical coupling materials
 - refractive index of optical materials

For further details see: "Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors" <u>https://doi.org/10.1016/j.nima.2010.09.027</u>

SuperNEMO Calorimeter R&D: Scintillators

• Block shape studies:

C256: H276:	cubic 256 ² x 190 mm ² hexagonal 276 mm diameter with 12 mm minimum depth
C308:	cubic $308^2 \times 190 \text{mm}^2$
T308:	cubic $308^2 \times 190 \text{mm}^2$ with tapered sides

• Material: polystyrene (PST) vs. polyvinyl toluene (PVT)

Material	$\Delta E/E(\%)$	$f_{\rm FWHM}$	Material	$\Delta E/E(\%)$	frwum
JINR NEMO-3 PS	8.9 ± 0.2	1	NULVIA DO	20 + 00	1
Eljen-200 PVT	8.3 ± 0.2	1.07 ± 0.03	NUVIA PS	7.9 ± 0.2	1
Eljen-204 PVT	7.8 ± 0.2	1.14 ± 0.03	Enhanced NUVIA PS	7.6 ± 0.2	1.04 ± 0.03

- Close collaboration with manufacturers (JINR Dubna, ISM Kharkiv, NUVIA, ELJEN) for contents of:
 - PPO scintillating agent
 - POPOP wavelength shifter
- Surface finishing: polished vs. depolished
 - All surfaces depolished (machine finish), with the face with the hemispherical cutout polished

SuperNEMO Calorimeter R&D: PMTs

• Photocathode QE:

- Bi-alkali alloy development for photocathode material has achieved QE > 40%
- Selection of PMT to optimise QE to the emission spectra of the scintillator

- Collection efficiency (close collaboration with Hamamatsu on 8" R5912-MOD tube):
 - Number of dynode stages reduced from 10 to 8
 - Voltage divider optimisation
 - Improved from <70% to ~80%

SuperNEMO Calorimeter R&D: PMTs

Photocathode uniformity:

 Close collaboration with Hamamatsu to improve photocathode uniformity across the entire surface of the R5912-MOD PMT

• Timing:

- Reducing the number of dynode stages improves the timing of the PMT by reducing the time transition spread (TTS)
- Gain and Linearity (a big achievement!):
 - Reducing the number of dynode stages and optimising the voltage divider decreases the gain:
 ~1 x 10⁵

 \rightarrow Good linearity (< 2% for very high light levels – 50 mA peak current) whilst good gain of the 1st dynode and therefore high collection efficiency

SuperNEMO Calorimeter R&D: Reflective Material & Coupling

- Reflective material:
 - High reflectivity, radiopure, low Z and low density (to reduce backscattering)

- Optical coupling:
 - Good optical coupling between scintillator and PMT essential for uniform and complete light collection

Optical Material	Refractive Index	$\Delta E/E(\%)$	$f_{ m FWHM}$
Isopropanol alcohol	1.37	9.4 ± 0.2	1
Cargille gel	1.46	8.6 ± 0.2	1.09 ± 0.04
Cargille gel	1.52	8.4 ± 0.2	1.12 ± 0.04
RTV 615	1.41	9.4 ± 0.2	1.00 ± 0.03

 Direct coupling of PMT to hemispherical cutout in scintillator gave the biggest impact in energy resolution improvement.

SuperNEMO Calorimeter R&D: Summary

• For further details, see:

"Calorimeter development for the SuperNEMO double beta decay experiment" https://doi.org/10.1016/j.nima.2017.06.044

Optimised SuperNEMO Optical Module Design

EJ-200 hexagonal PVT block:

276 mm diameter 193 mm deep, minimum thickness between PMT and scintillator: 100 mm

R5912-MOD Hamamatsu 8" PMT:

Maximum quoted QE: 33% 32% QE at 400 nm

Wrapping:

Sides: 75 μ m of PTFE (Teflon) ribbon Sides and entrance face: 12 μ m of Mylar

Back to Proton Therapy...

 With this fantastic energy resolution of 3.2% σ at 1 MeV can we apply the SuperNEMO optical module technology to proton therapy beam monitoring and proton imaging?

Challenges: from SuperNEMO (electrons) to a proton beam

- Very high intensity of events at a proton beam (~10 GHz):
 - Random number of protons per bucket from beam, we require 1 proton per bucket
 - Pile up!
- Scintillator quenching for protons:
 - For a plastic scintillator, the scintillator response is nonlinear with the amount of energy deposited in it
 - Amount of deviation \rightarrow "quenching"
 - Characterised by Birk's law:

$$\frac{dY}{dx} = \frac{S}{1 + kB(dE/dx)} \times \frac{dE}{dx}$$

dY/dx	light yield per unit path length
dE/dx	energy lost by particle per unit path length
kB	relates density of ionisation to energy loss
	= 0.207 mm/MeV
S	absolute scintillation efficiency

- Becomes important for large dE/dx and ionisaion density → important for protons, which have a large dE/dx when they slow down
- Energy range:
 - SuperNEMO optimised for electrons from 0.5 4 MeV for double beta decay
 - For proton therapy we require ~O(100 MeV)
 18/01/2017 PT Calorimetry

Step 1: GEANT4 Simulations

- A 60 MeV proton beam simulated, positioned 30 cm before the entrance face of the scintillator block
 - Proton beam has been run through the Clatterbrdige beamline
- Scintillator geometry and composition fully described
- Quenching of scintillation light in plastic scintillator for protons
- Energy deposited smeared according to Poissonian fluctuations in the number of generated photo-electrons
- The number of photo-electrons per MeV taken from test bench data (SuperNEMO calorimeter R&D): 982 photo-electrons per MeV (for an energy resolution of 3.2% σ at 1MeV)

Step 1: GEANT4 Simulations

Step 1: GEANT4 Simulations

- Quenching from simulations:
 - Simulated mean: 39.2 MeV
 - Quenching: 35% for 60 MeV protons
- Energy resolution from simulations:
 - σ: 0.252, μ: 39.21
 - σ/Ε: <mark>0.64 % σ</mark>

Step 1: GEANT4 Simulations Proton Stopping Distance

- Simulations of SuperNEMO scintillator vs Water Equivalent
 - Pencil beam simulations

Proton Beam Energy, MeV	Mean stopping distance, <mark>SCINT</mark> (mm)	Mean stopping distance, WATER (mm)	σ stopping distance, <mark>SCINT</mark> (mm)	σ stopping distance, WATER (mm)
60	30.21	30.54	0.33	0.33
200	255.4	257.1	2.48	2.44
300	505.9	509.9	4.64	4.78

- The SuperNEMO scintillator is water equivalent for stopping distance and spread
 - One to one conversion for water phantoms used in medical physics
 - An advantage for direct range verification using the "segmented" design

Step 2: Equipment Setup

Step 3: ²⁰⁷Bi Test at UCL

- Optical module resurrected after some years: re-measure energy resolution!
 - New test bench at UCL: a thin scintillator introduced into set up, which triggers DAQ only when an electron passes through it
 - \rightarrow Gammas removed, fit simplified to triple Gaussian of 976 keV and 482 keV peaks

- Only currently operational proton beam treatment centre in the UK
- Home to the Douglas Cyclotron → produces 60 MeV proton beam for the treatment of ocular melanomas (penetration of 60 MeV protons: 30.5 mm in water)
- Double scattering beam technique:

- Beam accelerated to single energy
- Beam passes through range-shifter wheel that modulates the proton beam energy to reach front/back of target volume
- Scatterer enlarges beam to cover whole volume
- Collimator shapes outer edge of beam to target area

 Eight full days in total of proton beam access granted to UCL from 2013 -2016

18/01/2017

- The proton rate from the beam was carefully controlled by
 - Inserting brass collimators with varying diameters (0.5 mm – 10 mm) into the beam nozzle (~30 cm upstream of the optical module)
 - Adjustment of the ion source gas supply
 - Adjustment of the cyclotron RF phase

Resulting distribution:

ADC Distribution: 800 V, 2 mm collimator, 100 ns gate

Our simulations accurately represent our data!

Step 5: Make the Technology Smaller & Faster

- We have already achieved the target energy resolution: 0.7 % σ
- But, at rates > 250 kHz we start to see pile up
- The next step is to do this for very high rates of 1 10 MHz with a compact design:
 - Reduce the size of the PMT and the scintillator to improve timing and make the design nozzle-mountable
 - VE HV PMT base to remove decoupling capacitor (not fast enough discharge)

Step 5: Make the Technology Smaller & Faster

Energy Dependence on Resolution

 Energy of protons incident on scintillator varied by placing absorbers (PMMA plates and calibration wheel) of known thickness ~1.8 m upstream of the optical module

Energy Resolution as a Function of Proton Energy: -900 V

Linearity: -900 V

- We want to run the PMT at higher voltages (can run at up to 1500V) as this will increase the PMT's collection efficiency and will improve the energy resolution
- BUT we have a LOT of light (tens of thousands of photo-electrons) so we need to make sure we are not saturating the PMT
 - Look at linearity

Proton Energy as a Function of ADC Mean: -900V

Beam Uniformity Measurements

• 0.5 mm Ø collimator

- Uniform 8 mm away from the centre
- 16 mm away from the centre is 1mm away from the beam edge
 - Currently trying to understand these edge effects
- Okay to use collimators to reduce rates! 18/01/2017 PT C

Radiation Damage Assessment

• Total estimated radiation dose received by 2" OM: 0.25 Gy

• No noticeable difference in resulting energy resolution so far.

Step 6: 250 MeV Beam at medAustron

- First external collaborators to use research room at the medAustron proton beam therapy centre in Austria!
- Two nights of tests:
 - Scintillator length increased to 45 cm to contain 250 MeV beam
 - 62 252 MeV beam
 - Rate adjusted down with chopper magnet
 - 1 kHz–1 MHz

Step 6: 250 MeV Beam at medAustron

Still seeing excellent energy resolution up to 252 MeV!

- Best resolution 0.2% σ
- But also still seeing rate issues:
 - PMT current limit from too much light!
 - Detector not fast enough for 10¹⁰ p/s clinical rate
- In close collaboration with Hamamatsu to develop a new kind of light detector:
 - High QE (photocathode) of PMT
 - Lower gain of 10³
 - Low noise
 - Currently experimenting with bases

Summary for Single Module Measurements

An optical module inspired by the SuperNEMO experiment has measured the 60 MeV proton beam at Clatterbridge with an energy resolution of:

- And a 250 MeV proton beam at medAustron with an energy resolution of 0.2%σ
- A great result for protonCT
- But this single module isn't fast enough to handle clinical proton rates and • therefore is not currently suitable for QA range verification
- Ongoing work to improve timing in collaboration with Hamamatsu
- Goal to reach 10 MHz

Design a segmented calorimeter to be used as a range telescope! 18/01/2017 **PT Calorimetry**

ADC Counts

Segmented Calorimeter: Range Telescope

- Clinical facilities operate at much higher rates of ~ 10⁹ 10¹⁰ protons/sec
- We need to reach these rates for a feasible QA system
- R&D for a new multi-layer scintillator design to verify the range directly:
 - Segment block into slices and read out light from entire spill (not single proton) from each slice individually
 - Map out the Bragg Peak
 - No need for energy-range conversion, measure range directly
 - Our plastic scintillator is water equivalent!
 - Minimum slice width will depend on manufacture: aiming for < 3 mm
 - Use simple, stable light detection: photodiodes/pixel sensors

Segmented Calorimeter: Range Telescope

- Current R&D:
 - Collaboration with NUVIA in Czech Republic to manufacture 2 3 mm scintillator sheets. Challenging due to uniformity!
 - Testing and researching best detector to couple scintillator sheets to
 - Simulations to characterise light quenching to reconstruct Bragg curve carried out by Laurent
 - Quenching included in Bortfeld formula
 - Fit to light output

Segmented Calorimeter: First Tests

- Fist tests carried out using the Birmingham cyclotron:
 - 28 MeV proton beam, range of protons ~ 6 mm
 - Clinical rates

- 2 sheets of 3 mm and 4 mm NUVIA scintillator used to
- PRaVDA Priapus MAPS pixel sensor (10 cm x 5 cm)

Current Work & Future Plans

- Construct 60 MeV prototype using:
 - 20 x 3 mm and 30 x 2 mm scintillator sheets obtained from NUVIA

- Tests ongoing to determine the best method to isolate sheets from each other and reduce light output (we have too much light!)
- Clinical beamline tests lined up for the near future:
 - Birmingham, Clatterbridge and medAustron
- Look at overall performance, radiation hardness and quenching at high rates

PT Calorimetry

Acknowledgements

• UCL participation in this work:

Simon Jolly, Ruben Saakyan, Derek Attree, Anastasia Basharina-Freshville, Laurent Kelleter, Matthieu Hentz

 A HUGE thank you to Andrzej Kacperek and the fantastic team at Clatterbridge, the medAustron team and the Birmingham team for all of their expertise and help!

Back Up Slides

First Test Beam Details

- The proton rate from the beam was carefully controlled by:
 - Inserting brass collimators with varying diameters (0.5 mm 10 mm) into the beam nozzle (~30 cm upstream of the optical module)
 - Adjustment of the ion source gas supply
 - Adjustment of the discharge current
 - Adjustment of the cyclotron RF phase
- Over the four days of test beam the dependence of measurements on the following parameters was studied:
 - Collimator diameter size (0.5 mm 10 mm)
 - Beam settings
 - Operating voltage of the PMT (800 V, 900 V)
 - Increasing HV increases collection efficiency of the PMT and therefore achieves a better energy resolution
 - Note: standard operating HV for this PMT is 1500V, but due to such high light levels (100,000 photons → 30,000 photo-electrons) reduce HV
 - Integrating window of acquisition on the CAEN digitiser (50 ns, 100 ns, 200 ns): sensitive to pile up effects

8" PMT + Hexagonal Scintilator: $0.67 \pm 0.11 \% \sigma$

ADC Distribution: 800V, 2 mm collimator, 100ns gate

8" PMT + Hexagonal Scintilator: 0.67 \pm 0.11 % σ

ADC Distribution: 800V, 2 mm collimator, 100ns gate

Pile Up: Varying Collimators

Considering Measuring Parameters

	PMT HV (V)	Acquisition window (ns)	Collimator diameter (mm)	Energy resolution, % FWHM	Reducing the acquisition gate from 200ns to 100ns shows considerable improvement
	800	50	2	1.6 ± 0.18	(ensures we only look at 1
Н	- 800	100	2	1.58 ± 0.27	But we don't win anything
	800	200	2	2.11 ± 0.42	with a 50ns gate.
	900	50	2	1.1 ± 0.13	At 900 V:
	900	100	2	0.97 ± 0.16	but are we linear at 900 V?
	900	200	2	1.27 ± 0.19	(See later)
	800	200	3	= 2.32 ± 0.43	Further confirmation that 2mm diameter collimator is
	800	200	4	2.16 ± 0.41	optimal for reducing

Our optimal parameters for measurements are:

PMT HV: 800 V Acquisition window: 100 ns Collimator diameter: 2 mm

Energy Dependence on Resolution

 Energy of protons incident on scintillator varied by placing absorbers (PMMA plates) of known thickness ~1.8 m upstream of the optical module

Energy Resolution as a Function of Proton Energy: 800V

Intrinsic Energy Resolution of Optical Module

- How much of the measured energy resolution is due to the proton beam and how much is due to the "intrinsic" energy resolution of the detector?
- From MC (1.48%) we already know that most of the energy resolution measured with the proton beam (1.58 ± 0.27) is from the intrinsic resolution of detector:
 - Use MC and data to put a limit on the energy spread of the 60 MeV Clatterbridge beam:

Proton energy spread: 0.65 ± 0.66 % FWHM or limit on spread: FWHM (60 MeV): <1.56% at 90% CL

- Also tests carried out at UCL:
 - Pulse PMT with a 400nm LED at an amplitude and width that will give a peak at the same ADC counts as the proton beam spectra
 - Fit the acquired spectra with a Gaussian and extract energy resolution

BUT: LED is operating at very "high" parameters (~8V and 40ns width), therefore the width is very sensitive to noise and the LED distribution would be better monitored with a device such as a pin diode

 \rightarrow future measurement!

Intrinsic Energy Resolution of Optical Module

Energy Resolution as a Function of Proton Energy: 800V, 100ns gate

• Proton beam energy resolution much worse than intrinsic energy resolution at lower energies due to scattering of protons

18/01/2017

Linearity: 800 V

- We want to run the PMT at higher voltages (can run at up to 1500V) as this will increase the PMT's collection efficiency and will improve the energy resolution: 0.97 ± 0.16 % FWHM from measurements (900V, 100 ns gate)
- BUT we have a LOT of light (tens of thousands of photo-electrons): can we trust this result?
 - Look at linearity

Proton Energy as a Function of ADC Mean: 800V

Measuring Quenching

• Fitting linearity curves gives us a measurement of scintillator quenching:

Proton Energy as a Function of ADC Mean: 800V

Linearity: 900 V

Proton Energy as a Function of ADC Mean: 900V

"Unfolding": Getting a Grip on Non-Linearity

- For our 900 V data we see non-linearity > 10 %
- BUT can we take into account non-linearity of our equipment to "unfold" the true energy resolution?
- We want to be able to do this:
 - To potentially increase HV even further (to 1000 V or above) to increase collection efficiency and hence improve the energy resolution
 - For proton imaging: requires protons > 300 MeV, which will give a huge amount of light and non-linearity will be inevitable
- Work currently on-going to determine the best way to:
 - Convert the data from ADC counts to MeV ("visible energy" due to quenching)
 - Fit the visible energy data to extract the "unfolded" energy resolution (with non-linearity taken out)
 - Compare results for 800 V and 900 V