

Fit by FPGA

Naoki Kimura
2021/12/08

Bragg curve fitting
Original fit sample

Purpose
 Improve fitting speed

Base status
 Root TF1 Fit (4 para)
 FUMILI minimizer

Processing time bottleneck
Two integral calculation for fit
function
Average calculation in the bin
for expected value for a bin

Goal
 ~20 times speed up
Current speed ~4 Hz (my loacl pc)

Goal is ~100 Hz

test process

Original Fit

TF1 Fitting

Fumili
Minimizer

+

Algorithm
check

FW like fit
function
(only stdlib)

Minuit
Minimizer

+

FW emulated
SW

FW like fit
function
(only stdlib)

FW like
Minimizer

+

HLS code

FW like fit
function
(limited func)

FW like
Minimizer

+

FW

● Check the fit results with pseudo data
● Compare processing speed in each step
● FPGA resource usage and speed with expected improvement

Fit function replacement
Algorithm
check
FW like fit
function
(only stdlib)

Minuit
Minimizer

+
All root lib function was replaced by std function from Fit function including
two integration and one average calc for a bin. i.e. All parameter is flexible.
- Integration’s resolution is region/16
- average of 4 region in a bin

Strong dependence of initial fit parameters

-2
 lo

g
lik

el
ih

oo
d

-2
 lo

g
lik

el
ih

oo
d

-2
 lo

g
lik

el
ih

oo
d

Initial likelihood
distribution with
bad parameter

Good fit by
good input

Bad fit by
Bad input True R0

=70

True sigma
=2

True kb =
0.07

Carefully set initial value for
the fit (not huge LL value,
good parabola)

-2
 lo

g
lik

el
ih

oo
d

e.g. bad init parameter

Ask: full absorption?

Minimizer algorithm
FW like
Minimizer Fit regtion

Initial position

+/- 50% range scan

.
Find minimum
position.

Repeat with double
resolution and
minimum position as
initial.

Sequentially loop for
each parameter

Simple and Robust

Example for minimization
process

…...

Minuit

FW alg

Minuit
Find min by 227
scan
MinLL 109.2

FW alg
Stop scan at 128
MinLL 117.5 Start from huge LL value (problematic)

Full test with pseudo data
Pseudo data truth parameters and Fit parameters

Pseudo data range
R0 20-80
Sigma 1-3
Phi0 6e-7
Kb 0.04-0.10

Fit parameter
Integration division = 16
N division for a bin average = 4
Minimization loop = 128

Initial value and fit region
R0 = maximum bin’s x + 10 +/- 20
Sigma = 2 +/- 1
Phi0 = 20e-7 +/- 20e-7
Kb = 0.07 +/- 0.03

Example pseudo data fit

Example pseudo data fit

Miss Fit

Example pseudo data fit

Pseudo ex results
There are still small bias for the fit results from maybe initial
and region for parameters.
FW func + Minuit looks best, but that is for just only this
rough pseudo data.
It is better to optimize with more realistic data.

Need the
optimization

Speed check (w my local PC)

Original : 5 Hz
FW func + Minuit : 22 Hz
FW func + Fw Min : 42 Hz

(not fair comparison. The fit function with limited integ
division, limited loop for minimization)

FW implementation (only HLS)
● Simple usage of HLS

– Remove all function that is not allowed to HLS
● e.g. pow → exp(a+log(b))
● Double to float

– Input is ap_ufixed(16,8) for 32 bin’s data and error and 4 input
parameters and output parameters

– Simple test bench that have data value and initial values

Vivado HLS
C simulation output

Similar results

Fit parameter
Integration division = 16
N division for a bin average = 4
Minimization loop = 128

FW implementation results
It is worst case
● Just HLS, float calc, no parallelization
Clock 100 MHz : ok
Fit frequency : 5-10 Hz
Resource usage : 0.4% FF and 5% LUT of xcvu37p

Expected improve point
● Float to fixed calc at least 50% resource (xilinx official)
● Each scan calc func 4 * 16 times, and that can

parallelize

● Less # can loop? ½?
● VHDL code (no HLS) ~75% resource, and speed *2-4

xcvu37p (huge FPGA)

64 time speed and resource

Summary of rough expectation
1/3 resource from table at 15 Hz fits, and speed is
linear func of resource usage up to ~1 kHz.
e.g 100 Hz fits with 7/3 resource of table

Summary
3 options

● Keep software
– ~40 Hz (FW like Func and Minimizer)
– Only take average (“I” option) for max bin +/- 1 bin? 120 Hz?
– Phi0 can fix? ¾ resource and time?

● HLS FW
– Need float to fixed. Parallelization by IP core level.
– Half resource. And double speed?.
– Easy modification and maintenance

● Full vhdl optimized FW
– Full controlled parallelization, and optimized calculaton (e.g. A*B = (A+B)^2 – A^2 -B^2 /2 with small LUT)
– Very efficient. Hard development and maintenance. No scalability.

 Backup

Code and usage
Files:
https://www.dropbox.com/s/g01lq0ssg35pmum/FitFPGA.tar.gz?dl=0

Origianl dir (Simeon/)
Added
my_FitTools.h :fit func for minuit w/o root lib
fw_FitTools.h : fit func with minimizer
In liveFit.cpp
-lMinuit was added to compile command.
int fitmethod=2; //0:original, 1:fwfunc+minuit 2:fwfunc_fwmini

FWFit02/
Codes are only fw_fitTools.cpp and tb_fw_fitTools.cpp
How to run:
Open vivado_hls -> new project (set name and FPGA) → add source(fw_fit...) → add test bench(tb_...) →project
setting set fw_fit… as Top module → run C simulation (very slow) -> run C Synthesis ss in next page

Mytest/ (not usefull)
Pseudo.cc : pseudo data test

Mytest.cc 　：single event test

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

