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Abstract

Proton beam therapy (PBT) is an alternative to X-ray radiotherapy as a method of treating cancers

with ionising radiation. The use of protons offers considerable advantages to X-rays – namely the potential

to deliver highly-localised doses of radiation, sparing healthy tissue. Advancements in technology and

larger public awareness have resulted in PBT becoming increasingly used in healthcare services, however

many technical challenges prevent PBT from reaching its full potential.

Treatment plan verification, or patient-specific quality assurance (patient QA), in PBT requires de-

tailed information about the volumetric dose deposition within an instrumented volume, to ensure the

accurate delivery of dose for a given treatment plan. Current methods of patient QA are time-consuming,

due to the repeated scanning of water phantoms. A collaboration between the High Energy Physics group

at University College London and the Physics Department at the University of Birmingham is developing

a prototype system for fast patient QA.

Single-module plastic scintillator-based calorimeters were developed at UCL for the SuperNEMO

high energy physics experiment that provide fast, accurate measurements of proton energy; these are

combined with 2D particle position information from the Birmingham silicon trackers developed for the

PRaVDA proton CT project to reconstruct the position and energy of each proton. This provides the

potential for reconstructing the 3D dose deposition for individual protons and therefore build up the

complete volumetric dose distribution for a given treatment plan. This would require the treatment plan

to be delivered only once, rather than repeatedly as is the case for existing methods.

Presented in this report are preliminary measurements made at the 36 MeV Birmingham University

cyclotron with a 3 cm PMT-based calorimeter module coupled to a single PRaVDA tracker module.

Significant improvements were made to the analysis routines of energy measurements made with the

calorimeter, to reliably calculate proton energies in an external trigger setup. Single-proton measurements

made by the tracker were then successfully correlated with energy measurements, and the position and

energy distributions for a variety of collimator configurations were reconstructed.
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1 Introduction

The goal of this project is to provide proof-of-principle for an early prototype of a detector that could allow

for fast treatment plan verification in proton radiotherapy. This report will first cover an overview of cancer,

illustrating the importance of the continued development of treatment methods and how radiotherapy fits

in with other modalities. It will then discuss the principles of radiotherapy and the differences between

X-ray and proton radiotherapy, showing the advantages of the latter. Treatment plan verification is then

introduced, where details on its necessity and its current methods are given, which will naturally provide

justification for this project. The principles of the prototype detector will then be discussed, where a brief

summary of scintillator and semiconductor detector physics is also given for the reader. The specifications

of the prototype detector are then given along with a more detailed summary of the project goals. The

experimental procedure is then discussed, which will entail the desired objectives and the data analysis

procedures. Final results are then presented along with concluding remarks.

2 Cancer: Biology, Diagnosis and Treatment

Cancer continues to serve as one of the most challenging human diseases to-date: according to Cancer

Research UK [1], in 2016 there were 163,444 deaths from cancer in the UK and each year there are more

than 360,000 new cancer cases, costing the National Health Service (NHS) £5 billion per year [2]. 1 in 2

people in the UK born after 1960 will be diagnosed with some form of cancer in their lifetime.

R. W. Ruddon defines cancer as an abnormal growth of cells caused by multiple changes in gene expression

leading to an imbalance of cell proliferation and cell death [3]. Biological cells naturally undergo division via

mitosis or meiosis as part of their life cycle [4]. These delicate processes can introduce mutations in cellular

genetic code, typically as chromosomal and point mutations [5]. With sufficient growth of such abnormal

cells, a tumour develops, which is classed as being either benign or malignant [3]. Benign tumours are

considered to be less dangerous than malignant tumours – as the latter is capable of disseminating mutated

cells throughout the body, through metastasis. In 2000, Weinberg and Hanahan defined the six hallmarks

of cancer, which were updated in 2011 with the addition of four others [6, 7]. These are:

1. Self-sufficiency in growth signals

2. Desensitisation to anti-growth signals

3. Evasion of apoptosis (cell death)

4. Angiogenesis

5. Indefinite cell division

6. Metastatic capacity

7. Abnormal metabolism

8. Evasion of immune system

9. Inflammation

10. Genomic instability

Diagnosis of cancer is typically done after indication of the disease from one or a combination of the

following: screening tests, medical imaging and the appearance of symptoms [8]. Imaging can be performed
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in several ways: X-ray imaging, computerised tomography (CT) imaging, magnetic resonance imaging and

nuclear medicine [9]. Treatment for cancer broadly falls into three categories: palliative, curative and

preventative [10]. Palliative treatments seek to relieve the symptoms of cancer; curative treatment methods

aim to eliminate the cancer completely; and preventative treatments attempt to reduce the risk of cancer

recurrence. The main curative methods are:

1. Surgery – the excision of a solid tumour from the body. Whilst effective, it can only be used for

tumours that are localised and accessible via surgical methods. Typically 45% of patients in the UK

will have surgery to remove their tumour as part of their primary treatment [1].

2. Chemotherapy – the use of cytotoxic agents to interfere with mitosis in non-specific cells [11]. An

effective form of treatment, but significant side-effects occur in the vast majority of patients due to

damage to both healthy and cancerous cells. 28% of patients in the UK will have chemotherapy, often

in conjunction with other, more localised treatments [1].

3. Radiotherapy – This treatment seeks to initiate apoptosis in cancerous cells by disrupting cell DNA

with ionising radiation, and minimising the dose delivered to healthy cells. Whilst more localised than

chemotherapy, the delivery of radiation to healthy cells can cause carcinogenesis (cancer formation)

[12]. As the method is non-invasive, it is highly useful for the treatment of inoperable tumours. 27%

of patients in the UK undergo radiotherapy as part of their treatment [1]. Both internal and external

methods exist – the latter is more typical and broadly comes in two forms: X-ray radiotherapy and

proton radiotherapy.

3 Radiotherapy

The principle of radiotherapy is to use ionising radiation to damage the DNA of cancerous cells to initiate

cell death. Ionising radiation is defined as radiation that can transfer energy to the electrons of atoms

or molecules, such that an electron can be liberated, leaving the atom or molecule ionised [13]. Organic

molecules are primarily bonded together with covalent bonds, where an electron pair is shared between two

atoms. If an electron is liberated from this pair, the bond breaks and the molecule breaks down. For DNA,

which has a double-helix structure, this takes place as double-strand breaking [5]. A double-strand break

will often lead to cell death due to neither DNA strand being viable as a template for repair after the break.

Both X-rays (photons) and protons are classed as ionising radiation, however the mechanisms through which

they interact with matter are very different.

It is important to clarify the distinction between the term “energy” and the term “dose”. The dose is

defined as the quantity of energy deposited by ionising radiation in a medium, per unit mass, measured in

grays (Gy) and is the term of choice when discussing radiotherapy [12]. As will become apparent later, the

energy of single particles is also discussed, wherein lies the distinction between the two terms: energy is used

to describe a single particle, whereas dose is used to describe the effect of a collection of particles.
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3.1 X-ray Radiotherapy

X-ray radiotherapy utilises photons to irradiate tumours. It is by far the most common and best understood

method of external radiotherapy, with the earliest examples dating back to the early 20th century [14].

Photons are indirectly ionising radiation as they do not possess electric charge, and so cannot ionise matter

directly. Photons can however transfer energy onto atomic electrons creating free, energetic, charged particles

along their path. These electrons can then go onto to cause double-strand breaks in DNA molecules. Photons

transfer energy via three processes [13]:

1. The photoelectric effect: the excitation and liberation of electrons in atoms through absorption of

a photon. The cross-section for this process dominates in the KeV energy range, and then rapidly

decreases in the MeV range.

2. Compton scattering: the scattering of photons off (free) electrons. Like the photoelectric effect, its

cross-section is largest in the KeV range, dropping in the MeV range. However the cross-section is

smaller than the photoelectric effect in the KeV range, and larger in the MeV range.

3. Pair production: This process requires photon energies of at least 1.022 MeV (i.e. twice the rest-mass

of the electron). In the electric field of an atomic nucleus (necessary for momentum conservation), a

photon can produce an electron-positron pair. The cross-section for this process continues to rise in

the MeV range.

For clinical applications, photons of energy 1-20 MeV are typically used [15], making Compton scattering

and pair production the primary mechanisms of energy-loss. Photons are highly-penetrating and do not

have a finite range in matter. Instead their interactions are probabilistic: a photon will either interact with

matter and be lost, or not interact at all, having the same energy as when it entered the body. Therefore,

photon intensity loss in a medium follows an exponential relation with the depth of the material [13]:

I = I0e
−µx (1)

where I is the intensity at depth x, I0 is the initial intensity and µ is the attenuation coefficient, a

description of the probability of interaction per unit length of a photon traversing a medium. This relation

is visualised as the purple line in Fig. 1. The initial build-up period for the photon dose is known as the

“skin-sparing” effect, and occurs due to the finite time taken for the secondary flux of electrons to accumulate

(recalling that it is the electrons that actually deliver the dose) [16]. This is a useful feature, and becomes

larger with increasing photon energy. However, the exponential drop of dose is undesirable: only a fraction

of the full dose is delivered to the tumour itself and a non-negligible amount is delivered beyond the tumour.

Therefore to sufficiently irradiate deep tumours, significantly more damage will have to be done to healthy

tissues. If the tumour is close to sensitive organs (as is often the case with inoperable cancers), the non-

negligible tail can result in serious side-effects for the patient post-treatment [17]. In practice, this is partially

off-set by treating from multiple angles, centering on the tumour, to minimise the dose delivered to healthy

tissue [18].
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Figure 1: The variation of delivered dose with depth for several types of radiotherapy. The dose delivered

by photons gradually decreases with depth, whereas the dose from protons culminates in a Bragg peak [19].

3.2 Proton Radiotherapy

Proton radiotherapy utilises protons to deliver ionising radiation to cancerous cells. Unlike photons, protons

are electrically charged and are therefore directly ionising. More notably, protons have a well-defined range

in matter for a given proton energy. Protons will primarily interact electrostatically, and their energy loss is

described by the Bethe-Bloch equation [20]:

〈
− dE

dx

〉
= Kz2

Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
(2)

where E is the energy, x is the depth, Z is the atomic number of the medium, A is the mass number

of the medium, z is the charge of the incident charged particle, I is the mean ionisation potential, Wmax is

the maximum kinetic energy transfer upon collision of a particle with an electron in the medium, c is the

speed of light in a vacuum, me is the mass of the electron, β = v
c , where v is the velocity of the particle, and

γ = 1√
1−β2

is the Lorentz factor. K = 4πNAr
2
emec

2, where NA is Avogadro’s number and re is the classical

electron radius. δ(βγ) is a density correction term.

Protons also interact via the mechanisms of Multiple Coulomb Scattering (MCS) and inelastic scattering

off atomic nuclei. The former is important when considering the angular spread of a proton beam, whereas

the latter has little effect on the overall dose deposition and beam shape [21, 22].

At clinical energies (50-250 MeV [14]), the 1
β2 term in (2) dominates, resulting in the characteristic “Bragg

peak” shown in light-blue in Fig. 1. As a proton slows down, the probability of interaction with an atomic

electron increases, thus the proton loses more energy and further slows down [23]. This positive feedback

loop is the main advantage of proton therapy: the majority of the dose is delivered to a highly localised
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region (where the proton slows to a stop) and with very little dose delivered in the region beyond. Given

that the energy of a proton defines well the range in matter, several Bragg peaks can be superimposed to

deliver a consistently large dose over a tumour region [24]. This is known as a “Spread-Out Bragg Peak”

(SOBP) and is shown in Fig. 2.

Figure 2: The delivered dose by superimposing several Bragg peaks from protons of different energies. Photon

dose variation and pristine (single) Bragg peak is shown for comparison [25].

This behaviour makes proton radiotherapy an attractive alternative to photon-based radiotherapy: a large

dose can be delivered to a tumour, with minimal collateral damage to healthy tissue. Proton radiotherapy

typically offers 60% less total integral dose compared to photon radiotherapy, thus making it optimal for

the treatment of paediatric patients, who are more susceptible to radiation side-effects [26]. However, this

introduces new technical difficulties. The highly-localised nature of the dose deposition requires the beam

to be delivered accurately, with little margin for error (typically to mm precision, although practices vary

across institutes [27, 28]). If the beam is delivered incorrectly, cancerous tissue may receive no dose at all

(under-shooting), or healthy tissue may receive the full dose instead (over-shooting). Given that radiotherapy

is often used for treating tumours near vulnerable parts of the body (e.g. the spine or the brain stem), an

incorrectly delivered dose could lead to devastating effects for a patient. This necessitates the need for

treatment plan verification, otherwise known as patient-specific quality assurance (QA).

3.3 Treatment Plan Verification

In both X-ray and proton radiotherapy, a designed treatment plan must be verified before treatment, to

ensure optimal patient safety. In the context of proton radiotherapy, a patient’s treatment plan is defined as

the sequence of proton fields that have been determined to be the best option for treating the patient. An

example of a the difference between an X-ray treatment plan and a proton treatment plan is shown in Fig. 3.
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A patient will first undergo a CT scan to map the part of the body undergoing treatment [14]. A treatment

planning system then formulates the treatment plan by converting this CT scan into relative proton stopping

powers, which is the energy lost by a charged particle per unit distance in a medium. This is typically done

via analytical pencil-beam dose calculation algorithms to project the range of protons based on the water-

equivalent depth in the patient [29]. The use of CT scans to formulate the treatment plan introduce an

uncertainty of 1-3 mm in the location of the Bragg peak, due to the differences in the interactions of photons

and protons in the medium [30]. Other uncertainties include those from CT noise, resolution and artefacts.

Treatment plan verification determines whether the range and dose predictions for the proton beams are

correct within an acceptable uncertainty.

Figure 3: A treatment plan for a case of esophageal cancer, showing the difference in planned dose deposition

between proton (left) and X-ray radiotherapy (right) [31].

A treatment plan is typically verified by delivering the plan to a water tank dosimeter, water phantom,

or other detector formed of layers of ionisation chambers interspersed with water-equivalent material [32].

Water-equivalent material is chosen as a close approximation of human tissue [23]. However, this process

is typically time-consuming: the limitations on how close dosimeters can be placed together mean that the

treatment plan has to be repeatedly delivered and the entire volume of the water phantom must then be

scanned piece-wise [27]. After each measurement, the dosimeter is moved to a new position within the

water volume and the treatment plan is then redelivered. This takes valuable time away from actual patient

treatment. The focus of this project is to develop a detector that eliminates the need for repeated treatment

plan delivery in patient QA, to shorten the process from more than an hour to just a few minutes.

4 Prototype Detector for Fast Treatment Plan Verification

Treatment verification requires complete information about the volumetric dose deposition of protons within

an instrumented volume: in other words, the position and energy of protons in 3D. It is proposed that a

silicon-based semiconductor tracker could be used to track 2D spot (collections of protons) position, and

energy measurements could be found using a scintillator-based integrating range telescope, which acts as

water-equivalent material. Such a device would not require repeated piece-wise measurements of energy and
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position and could rotate with a clinic gantry, eliminating the need for realignment. While the technical

details of the device are beyond the scope of this project, the purpose of this experiment is to provide proof-

of-concept for the simultaneous use of such detectors in a scaled-down version that operates on the same

principle.

The setup used in this experiment is designed to reproduce the 3D deposition of protons at much lower

particle rates than are used in clinical applications. This is referred to as single-proton counting, as individual

proton position and energy are measured. At clinical rates, it is not possible to resolve individual protons,

but single-proton counting is sufficient for the demonstration of the detector principle. Before the details

of the simple prototype are discussed, a broad overview of the physics of scintillator and semiconductor

detectors is given, to better illustrate the motivation for their use.

4.1 Scintillators: A Brief Overview

The scintillator operates on the phenomenon that in certain materials, when ionising radiation excites an

electron of an atom to a higher energy state (through photon exchange), a photon in the visible range will be

emitted when the electron de-excites [13]. Scintillators are one of the most commonly used technologies in

high-energy physics, having applications in tracking, time of flight measurements, particle identification, as

well as calorimetry (to name a few). A few definitions [33]: scintillators exhibit the property of luminescence,

which is the emission of visible light upon de-excitation. The term fluorescence is used if this emission is

within 10−5 s of the initial absorption whereas phosphorescence or afterglow is used if the emission takes

longer (say, if the excited state is metastable).

There are several types of scintillator, which have different scintillation mechanisms and properties. The

scintillator used in this experiment is a polystyrene-based plastic scintillator (PS), which boasts a decay

time (the time taken for photon emission after electronic excitation) on the order of nanoseconds [20]. A

PS is made up of organic molecules (known as its base), with its sensitivity to ionisation arising from the

benzene ring found in the polymer [33]. The benzene ring has free valence electrons that are not associated

with any particular atom in the molecule, but instead reside in π-orbitals, essentially rendering the electrons

delocalised. In order to make scintillators transparent to their own radiation, that is to stop photon re-

absorption, the base is typically doped with a fluor, which has slightly different energy levels to the base

[34].

Both singlet and triplet π-electron energy levels of a base feature sub-levels that arise from vibrational

fine-structure [33]. Upon excitation from the singlet ground state, the electron will be promoted to one

of the vibrational sub-levels of the excited singlet energy level. This electron will then undergo vibrational

relaxation or internal degradation to the normal excited singlet energy level. When the electron then finally

de-excites to one of the ground state energy levels, a photon (in the visible range) will be emitted that is of a

longer wavelength than the initial excitation (the so-called Stokes’ shift) [20]. A similar argument applies to

the triplet states, however the transfer between singlet and triplet states typically has a longer decay time,

and can be a source of afterglow. The addition of a fluor can improve the efficiency of this process: after the

initial excitation, relaxation can occur but instead to one of the excited energy levels of the fluor through
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Förster energy transfer [33]. This results in a larger Stokes’ shift and faster decay times, both of which are

desirable. A simple schematic of this process is shown in Fig. 4.

Figure 4: Schematic of the scintillation “ladder” depicting the operating mechanism of an organic scintillator.

Approximate fluor concentrations and energy transfer distances for the separate sub-processes are shown [20].

Note: the fluor should not be confused with an activator, which is an impurity added to an inorganic

crystal scintillator but broadly serves the similar purpose of improving scintillation light output by providing

additional routes for electron de-excitation [20]. A sensitiser serves somewhat of a similar purpose as

a secondary fluor; it is a small concentration of ions added to an inorganic scintillator to improve the

performance of the activator (but could also quench the light output).

The qualities of a good scintillator are [33]:

1. High efficiency in the conversion of excitation energy into fluorescent radiation.

2. Transparency to its fluorescent radiation to allow for the passage of photons.

3. Emission in the spectral range consistent with the spectral response of existing photomultipliers.

4. A short decay constant.

However, scintillators are not typically used for calorimetry due to the non-linear response in energy

transfer to light output for large rates of energy transfer. This is where electrons are excited but do not

radiate a photon upon de-excitation, reducing the fast decay component from excited singlet states. The

first successful semi-empirical model to explain the non-linearity effects was put forward by Birks [35]:

dL

dx
=

AdE
dx

1 + kB dE
dx

(3)

where: dL
dx is the light output per unit length, dEdx is the energy transfer per unit length, A is the absolute

scintillation efficiency and kB is a parameter that relates the density of ionisation centres to dE
dx . Non-

linearity effects are most pronounced in heavier particles, which have more pronounced Bragg peaks. For
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protons at energies used in this experiment however, one can reasonably assume linearity [33]. Another

consideration in efficiency comes from the conversion of light to current in the PMT, where saturation effects

can occur with large light output from the scintillator.

While PSs are reliable, cheap and flexible, they do have some disadvantages [20]:

1. Subject to ageing.

2. Suffer from radiation damage.

3. Degrade upon exposure to certain chemicals (e.g. oils and solvents).

4. Are not temperature resistant.

5. Liable to surface crazing, which damages light output due to the reliance on total internal reflection.

4.2 Semiconductors: A Briefer Overview

Semiconductor detectors operate on a principle similar to that of ionisation chambers and they were originally

designed to measure particle energy. However, over the last few decades, semiconductors have become

increasingly useful in particle tracking [34].

Semiconductors are crystalline materials whose outer electrons exhibit band structure, such that there is

a small energy gap (on the order of eV) between the valence band (VB), where electrons are bound to their

lattice atoms, and the conduction band (CB), where electrons are delocalised and able to carry a current

[36]. Common examples are silicon (used in this experiment) and germanium. At 0 K, all the electrons in a

semiconductor occupy the VB, while at room temperature, thermal excitation can promote a few electrons

to the CB. When an electron is excited to the CB, it leaves a hole in the VB, which behaves like a positron

[37]. That is to say, a neighbouring electron in the VB can jump to fill the hole, leaving a hole where it

used to be. If the process repeats, it appears as if a positive charge carrier is moving through the material.

Therefore in a semiconductor, charge carriers arise from electrons in the CB and holes in the VB.

Typically, semiconductors are doped with an impurity to enhance the number of electrons and holes.

Both silicon and germanium are tetravalent atoms, hence the addition of a trivalent or pentavalent impurity

can increase the number of electrons and holes respectively [36]. This introduces the distinction between

n-type and p-type doped semiconductors: the former has a greater concentration of electrons whereas the

latter has a greater concentration of holes. The respective donor and acceptor levels are closer to the CB

and VB, allowing for easier electron/hole transfer [37].

Practical applications utilise both n- and p-type semiconductors together – a simple example is the

juxtaposition of an n-type with a p-type semiconductor to create a pn-junction [38]. Due to the difference

in the concentration of electrons and holes the n- and p-types, there is a diffusion of electrons and holes

across the junction. The electrons fill up holes in the p-side and the holes are filled by electrons in the n-side.

Therefore, the n-type side becomes positively charged, while the p-type side becomes negatively charged.
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An electric field is then established across the junction, halting the diffusion, leaving a depletion zone in the

junction where there are no mobile charge carriers [37]. This allows for the detection of ionising radiation:

ionising radiation will liberate electron-hole pairs, which are then swept across the pn-junction, generating

a current that is proportional the the energy loss, which can be readout [37]. This is shown in Fig. 5.

Figure 5: The production and collection of charge in a silicon tracking sensor [34].

The pn-junction can be made larger and the electric field across it stronger, to allow for better efficiency

of charge collection and the ability to detect more energetic particles. This is typically done by applying a

reverse bias across the pn-junction (i.e. a negative potential in the p-side and a positive potential in the

n-side) to further separate electrons and holes from the depletion zone [38]. This can increase the width of

the zone from a few microns to a few millimetres, however breakdown can occur at high potential difference.

To readout from the pn-junction, heavily doped n and p material is used between the semiconductor and

the metal leads. Provided the depletion zone is thick enough to stop the particles, detection is extremely

efficient [37].

Broadly speaking, there are two types of silicon trackers: continuous and discrete [37]. The discussion

shall be restricted to micro-strip detectors, which are a type of discrete tracker. The micro-strip detector

works by using a highly resistive n-type silicon base and placing a series of p-type readout strips onto the

surface [34]. A suitably heavily doped n-type electrode is placed on the other side of the base. The spatial

resolution is then governed by the separation of the strips [13]. It should be noted that like the plastic

scintillator, semiconductor detectors are also liable to radiation damage. High-energy particles can knock

atoms out of the semiconductor lattice, to create point defects and disrupt the band structure by introducing

trapping levels in the band gap [20].

4.3 The UCL Single-module Calorimeter

The University College London (UCL) Proton Beam Therapy group is currently developing a single-module

calorimeter utilising scintillator technology from the SuperNEMO experiment, which is seeking evidence

for neutrino-less double-β decay. Such an experiment requires highly accurate and sensitive apparatus in

order to detect low-energy electrons against a strong background of γ-rays, fulfilling the requirements of

fast, accurate data collection. The apparatus was also designed with cost-effectiveness and longevity in mind

[39]. While these characteristics are attractive for medical applications, an element of luck was involved

for the use of this scintillator for treatment plan verification measurements. The single-module calorimeter

prototype consists of a 3 cm × 3 cm × 5 cm polystyrene plastic scintillator block (wrapped in Mylar foil to
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increase light output) of density 1.06 g/cm3, maximum emission wavelength of 425 nm (where the refractive

index is 1.6), and a decay time of 2.5 ns. The scintillator is coupled via optical gel to a Hamamatsu R13089

photomultiplier tube (PMT), which is powered by a Caen NDT1470 high voltage power supply, and with

a Teledyne LeCroy HDO6104 oscilloscope recording the output of the PMT. The scintillator and PMT are

shown in Fig. 6.

Figure 6: The 3 cm × 3 cm × 5 cm polystyrene plastic scintillator block wrapped in Mylar foil and Hama-

matsu R13089 PMT.

4.4 The PRaVDA Silicon-strip Tracker

This project is conducted in partnership with the Proton Radiotherapy, Verification and Dosimetry Applica-

tions (PRaVDA) consortium, who have developed solid-state silicon-based trackers capable of simultaneously

detecting several protons in 2D at beam rates of 26 MHz to sub-mm precision [40]. Based on technology

designed for use in the proposed High-Luminosity Large Hadron Collider, its intended use is the development

of proton CT techniques to improve treatment planning in proton therapy1. In this experiment however, it is

proposed that the tracker could be utilised in conjunction with a calorimeter for treatment plan verification

measurements. Each tracker module consists of three layers of 150 µm thick n-in-p silicon strip detector,

each with an active area of 93 × 96 mm2 and a strip pitch of 90.8 µm. The layers are offset by 60 degrees

to each other to form a x-u-v coordinate system, to allow unambiguous 2D measurements of position [41].

Experimental runs were conducted at the Birmingham University MC40 cyclotron, where a PRaVDA tracker

module was available. The module is shown in Fig. 7.

1If protons were used instead of photons in mapping treatment areas for patients, many of the uncertainties associated with

the differences in particle interactions could be overcome, giving more accurate treatment plans.
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Figure 7: A single PRaVDA silicon-strip tracker module, placed in the beamline at the Birmingham Uni-

versity MC40 cyclotron. The single-module calorimeter housing is placed directly behind the tracker.

4.5 Project Goals

The goals of the project were:

1. To develop analysis tools to accurately analyse data from the calorimeter to calculate proton energies.

C++ code utilising CERN’s ROOT data analysis framework written previously for the group could

successfully calculate proton energy, however required significant improvements in pile-up filtering and

pulse location. Extensions to the code were required to allow analysis of tracker data from PRaVDA

and match tracker events to calorimeter events. The planned work sought to repackage and improve

this code to make it more efficient, more powerful, and easier to use.

2. To provide proof-of-principle of the use of a calorimeter and tracker simultaneously to reproduce dose

deposition distributions by successfully matching calorimeter and tracker events. Experiments were

held at Birmingham University using a test proton beam to fire protons at the calorimeter and tracker,

placed in line of each other and the beam. Collected data was analysed in an effort to extract the

energy spectrum of recorded protons, and to pair tracker and calorimeter events to reproduce dose

deposition maps.
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5 Birmingham Beam Test (25th-26th October 2018)

The aim of the experiment was to test the use of the single-module calorimeter alongside the PRaVDA silicon

strip tracker with a 36 MeV proton beam. The intention was to perform measurements of proton energy and

position through increasing thickness of absorber (PMMA), and with different types of collimators. Proof-of-

principle for the simultaneous use of the two detectors would come from reproducing the 3D dose-deposition

distributions of the different collimators, which are shown in Fig. 8, and by demonstrating the shift in the

peak of energy spectra of protons through increasing thickness of PMMA absorber. Similar experiments had

been conducted previously to provide proof-of-principle, however they ultimately failed due to the inability

to sync the internal clocks of the tracker and LeCroy oscilloscope, where the latter was self-triggered at

the time. This meant that position measurements could not be correlated with energy measurements. The

experiment discussed here improved upon the previous attempt by having the tracker trigger the calorimeter

and by performing data collection in short bursts.

(a) 2 mm centred collimator. (b) 2 mm off-centre collimator, offset

by 6 mm in the x-direction.

(c) 2 mm double collimator, with cen-

tres 12 mm apart in the x-direction.

Figure 8: The different collimator configurations used in the experiment. Each tested with 0-6 mm thick

PMMA. The collimator shown in Fig. 8c was tested with 3.95 mm of PMMA in front of one hole.

The calorimeter was placed on a level stand downstream of the proton beam to the tracker (as shown in

Fig. 9), with the windows of both aligned by careful measurement and markings placed on the calorimeter

case. Experimental runs were conducted across two days with: a Caen high voltage supply providing -900V

to the PMT, the LeCroy oscilloscope operating on a positive edge trigger set at a threshold of 70 mV, and a

beam current on the order of 10 kHz (∼160 pA). The oscilloscope had a time-base of 100 ns/div, a trigger

delay of 80 ns and a vertical scale of 50 mV/div. These were set by monitoring the input for some test

protons, such that the pulse was centred with sufficient tail visible. The tracker trigger was sent into channel

2 of the oscilloscope; a square wave of amplitude ∼400 mV and period ∼15 ns, which triggered the input

of channel 1 (the output of the calorimeter) to be recorded for the length of the window (100 ns/div ×
10 div = 1000 ns). This is referred to as an acquisition. The output of the PMT was split between the

oscilloscope and a Caen DT5751 digitiser, the latter was used to take independent measurements of proton

energy spectra for verification with the oscilloscope. The experimental set-up is summarised in Fig. 10.
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Figure 9: The housing of the single-module calorimeter placed on a level stand downstream of the tracker,

such that the windows of the tracker and calorimeter were aligned.

Control Room

Experiment Room

Control Laptop 1

Control Laptop 2

Control Room
Wireless Hub

Ethernet 
Switcher

HV Control Laptop
Caen NDT1470
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LeCroy HDO6104
Oscilloscope

Hamamatsu 
R13089 PMT

3 cm Plastic 
Scintillator

Enclosure Mylar Window

Incoming 
Protons

PRaVDA Silicon 
Tracker

Caen DT5751 
Digitiser

Square-wave trigger pulse

Figure 10: Experimental schematic: a proton first travels through the chosen collimator/absorber configura-

tion and then enters the tracker, where a position measurement is made. When the tracker registers a hit, a

trigger is sent to the oscilloscope to record the output of the PMT for a predetermined length of time, during

which the proton should stop in the scintillator block, creating a flash of light that generates a current in

the PMT.
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Due to technical difficulties with the proton beam, limiting the time available for data acquisition, and

recording of the incorrect channel on the oscilloscope, the run on the 25th failed to provide useable data.

However, the remote desktop configuration (used to operate the oscilloscope and digitiser remotely in the

control room), calorimeter, digitiser, oscilloscope and tracker were all tested to be functional. The oscilloscope

was found to successfully receive a trigger from the tracker; measurements were made of the waveform trace

of the trigger both directly from the tracker, and when split between the oscilloscope and the digitiser (where

it was also attempted to trigger from the tracker). The traces revealed an expected ∼50% drop in amplitude

when split, however it was found that the amplitude was too small to trigger the digitiser, which only accepts

triggers on the order of ∼V. From the reconstructed hit distribution in 2D, the tracker was also found to be

slightly off-centre. This was corrected before data acquisition the next day.

The run on the 26th proved more fruitful, where a 36 MeV beam was delivered for a longer period of

time. Data collection was performed in 5 second bursts of protons, where the tracker fed triggers to the

oscilloscope and the digitiser was set to self-trigger for its measurements of energy spectra. The oscilloscope

recorded the output of the PMT with a maximum of 50,000 acquisitions per file, which was much greater

than the number of triggers delivered in 5 seconds. After each run, the trace of the oscilloscope (the series

of all the acquisitions recorded) was saved to disk. Each test configuration was repeated 3 times where the

digitiser recorded one spectrum continuously for each 3 repeats of data collection with the oscilloscope. The

test configurations were:

• A centred 2 mm collimator with no PMMA, used to confirm that the oscilloscope was being triggered

appropriately by the tracker. The number of pulses was analysed after this run, and it was found that

both the tracker and calorimeter recorded approximately the same numbers of events.

• A centred 2 mm collimator with increasing thickness of PMMA: 0.95 mm, 2.01 mm, 2.96 mm, 3.95

mm, 4.90 mm, 5.70 mm. Each thickness was repeated 3 times.

• A 2 mm collimator offset by 6 mm in the positive x-direction, with no PMMA and with 5.70 mm of

PMMA.

• A 2 mm collimator pair, with centres apart by 12 mm, with no PMMA and with 5.70 mm of PMMA.

An extra set without the PMMA was performed at a lower current rate.

• A 2 mm collimator pair, with centres apart by 12 mm in the x-direction, with one hole covered by 3.95

mm of PMMA. An extra set was performed at a lower current rate.

5.1 Development of Analysis Tools

5.1.1 Energy Spectra Reconstruction

The first stage of analysis was to reconstruct the proton energy spectra (histograms of calculated proton

energies) from the acquisitions recorded by the LeCroy oscilloscope for all test configurations, and compare

against the equivalent spectra recorded by the digitiser. The digitiser is held as a “gold-standard” for
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spectrum reconstruction, however it lacks the ability to accurately resolve waveforms of individual protons,

which is necessary in order to correlate individual proton measurements across detectors. While the digitiser

automatically calculates energy spectra, a method must be devised to integrate over acquisitions recorded

by the oscilloscope to recover proton energies. Comparison of energy spectra then allows for verification of

the chosen method of integration. An example of an acquisition is shown in Fig. 11. A data set consists of

thousands of such acquisitions, most are considered to be “good”, where only a single proton is recorded,

however some are considered to be “bad” (typically 10%), where there is more than one proton (pile-up), or

no proton at all (false-trigger).
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Figure 11: An example of a good acquisition recorded by the LeCroy oscilloscope, i.e. one with only a single

proton. 0 ns on the time axis represents when the trigger arrived from the tracker. The pulse takes negative

values due to the negative potential powering the PMT. The acquisition must be baseline subtracted (to

remove dark current noise), flipped in the y-axis to give positive values and then integrated over to find the

energy.

Code was written to first import and then plot digitiser data in histograms, for comparison with LeCroy

spectra. Development of the analysis tools used the centred collimator with 2.01 mm PMMA configuration

as a test data sample, as it appeared to be the cleanest data set from viewing the digitiser spectra. The

spectrum produced by the digitiser for this configuration is shown in Fig. 12.

Acquisitions recorded by the oscilloscope require three stages of processing:

1. Baseline sigma testing: This is where the signal variation of a distinct region of the acquisition is tested

to determine whether it lies within a pre-defined standard deviation (called the maximum baseline

sigma). This is employed as a rudimentary way to filter acquisitions with pile-up, and is explained

further below.

2. Baseline subtraction: This is where the dark noise current is subtracted (shown as the variation around

35 mV in Fig. 11) and then the signal is flipped to give positive potential difference values.
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Figure 12: The reconstructed spectrum from the Caen digitiser for the centred collimator with 2.01 mm

PMMA configuration. The digitiser records data into bins of size 1 mVns. Analysis of the LeCroy data seeks

to reproduce such spectra.

3. Integration: Where a region of the acquisition is chosen and the signal integrated over, to give a value

representative of the proton energy.

Previously written code for the analysis of LeCroy data successfully calculates proton energy by integrat-

ing using a composite rule Newton-Cotes formula [42, 43] over a pre-determined window within an acquisition

(i.e. where the pulse should be). However, this operated on the assumption of a fixed pulse position within

an acquisition, due to the oscilloscope self-triggering at the time, such that the pulse would typically start

just before 0 ns. This was no longer the case. The tracker triggered the oscilloscope to record an acquisition,

so the pulse could be anywhere within an acquisition (due to timing jitter between the arrival of a proton

and the output of the trigger pulse from the tracker) or not at all (if a false trigger is sent from the tracker).

Initially, the user-definable fixed-position parameters were adjusted to give the best spectrum possible, which

were found to be: an integration length of 150 ns, a horizontal offset of -120 ns (i.e. where integration starts

relative to 0 ns), and a maximum baseline sigma of 20. An example of the resulting spectrum, for one repeat

of the centred collimator with 2.01 mm PMMA configuration is shown in Fig. 13.

Comparison of Fig. 12 and Fig. 13 showed that the peak was recovered with approximately the correct

height. It was not essential for the peak to have the same absolute energy across the digitiser and the

oscilloscope; instead it was more important to recover the finer features of the energy spectrum, such as the

correct peak shape. The energy scale of the LeCroy could be calibrated to match the Caen, if needed. The

most apparent problem in Fig. 13 was the non-negligible number of events that appear in a Gaussian-like

shape centred around 0 mVns, indicative of acquisitions with no pulses. To rectify this, and to improve

pile-up filtering, the baseline testing method was overhauled.
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Figure 13: The reconstructed proton energy spectrum from the LeCroy oscilloscope for one repeat of the

centre collimator pair with 2 mm PMMA configuration using a fixed integration window. Data placed into

100 bins.

First, a few words to explain baseline testing. This process was inherited from the previous code and its

purpose was to determine an average background noise level, which could then be subtracted in the baseline

subtraction process, and to test (semi-rigorously) whether an acquisition had any pile-up. The original

method tested 9/10 of the region before 0 ns (i.e. -600 ns to -60 ns in Fig. 11, referred to as the pre-trigger

region), calculating an average potential difference and testing the potential difference variation in this region

to determine if a pulse was present. If the standard deviation of the signal was too high in the pre-trigger

region, an acquisition would be labelled as “bad” and would be filtered from the energy spectrum. However,

this method only works if one can assume that the pulse will always be close to 0 ns (hence the reason 9/10

of the region is used, to avoid the pulse skewing the test), and it does nothing to tackle empty acquisitions

or filter pile-up in the positive time region.

Initially, it was chosen to continue to test the pre-trigger region, assuming that a pulse would still be

somewhat near 0 ns and that most acquisitions would only contain one pulse. Routines were added such

that if the baseline test was passed then another test would take place that searched for a negative potential

difference value in the acquisition, indicative of a pulse present in the acquisition. If both tests were passed,

then an acquisition was labelled as “good”. Additionally, if the initial test was failed, then 9/10 of the points

after 0 ns (i.e. 40 ns to 400 ns in Fig. 11, referred to as the post-trigger region) was tested, in case the pulse

happened to be in the pre-trigger region. If this second test was passed, and a negative potential difference

was found, then an acquisition could also be labelled as “good”. Acquisitions that failed both baseline tests

or failed to provide a negative potential difference value were labelled as “bad” and filtered from the energy

spectrum. This baseline testing method is more robust than the previous version as a single pulse can be in

any part of an acquisition and still pass the baseline test. However, the issue of pulses close together still

presides and if the first baseline test is passed, then any extra pile-up towards the end of the acquisition will

21



not be identified. In practice however, these two issues did not cause any major problems, as it turned out

that the majority of acquisitions only had one pulse.

By locating the largest negative value recorded in the acquisition, i.e. the peak of the pulse, the location

of the 150 ns integration window was dynamically allocated instead of relying on a fixed position. This

removed the need for the horizontal offset parameter (meaning less guesswork for the user) and aided pile-up

filtering by focusing integration on the most prominent pulse in an acquisition. However, it was found that

constraining the maximum baseline sigma any more than the (generous) value of 20 sigma would ruin the

spectrum in Fig. 13 entirely, such that no peaks were observed. Investigation of some raw waveforms led to

the realisation that most pulses arrive at roughly -120 ns, which meant that choosing a pre-trigger region

of 9/10 of the points before 0 ns in the baseline test was including some of the actual pulse. Shortening

the testing region to 8/10 improved the spectra considerably: the maximum baseline sigma could be con-

strained to 5 sigma (meaning stricter pile-up filtering) and the location of the peaks shifted closer to those

in the digitiser data without any scaling. The improved version of Fig. 13, combining the 3 repeats of the

configuration and with all the above changes is shown in Fig. 14, demonstrating a much closer resemblance

to Fig. 12.
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Figure 14: The reconstructed spectrum from the LeCroy oscilloscope for all 3 repeats of the centred collimator

with 2.01 mm PMMA configuration, now using a dynamic integration window (150 ns in length), a shorter

baseline test region, and checking for empty acquisitions. Data placed into 550 bins.

For a complete comparison of energy spectra, it was necessary to plot digitiser and oscilloscope spectra

together on a single plot, scaling as appropriate. It was elected to scale the higher-resolution Caen digitiser

spectra to match that of the LeCroy oscilloscope. The energy scale of the oscilloscope required some small

calibration to match that of the digitiser and since the digitiser was left to self-trigger and ran continuously

for each test configuration, it recorded many more events than the oscilloscope, so the frequency scale also

had to be normalised. By comparing the positions of the top of the peak across the digitiser and final LeCroy

spectra, approximate x- (energy) and y- (frequency) scale factors were first found, which were found to give
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reasonable matches on their own. To find a more accurate y-scale factor however, the number of events

within ±160 mVns of the peak in both the oscilloscope and digitiser spectra were counted. Dividing the

number of events in the Caen peak by the number of LeCroy events (multiplied by a factor of 4) gave an

accurate y-scale factor. As the results will show later however, this method was not reliable for data sets

with poor peaks. The factor of 4 is also discussed in the results section.

To find a more accurate x-scale factor, it was elected to minimise a χ2 between the digitiser and oscillo-

scope histograms [44], using the approximate x-scale as a prior. The technical difficulty for this arose from

the fact that the digitiser data is much more precise than the oscilloscope, having 4 times as many bins for an

axis range of 0-2200 mVns and that in ROOT, a χ2 can only be tested between identically binned histograms

[45]. This is the reason that χ2 minimisation could not be used for the y-scale, as one would have to re-bin

the digitiser data to match that of the LeCroy, rendering any y-scale found unusable for the full-resolution

spectrum. Given that only a small change was needed to the prior x-scale estimate, 30 candidate x-scale

factors were constructed ±1.5% of the prior (i.e. in steps of 0.05%). For each candidate, a separate histogram

was constructed of the digitiser data, but in the same number of bins as the oscilloscope (550) and scaled in

the x-axis with the candidate scale factor. A χ2 test was then performed between each candidate histogram

and the original LeCroy histogram: the scale factor that returned the smallest χ2 would then be chosen as

the x-scale factor to apply on the full-resolution digitiser data in the scaling process. The results of such a

process is shown in Fig. 15.

Figure 15: Results of the χ2 minimisation to find an x-scale factor for the centred collimator with 2 mm

PMMA data set. In this case, the prior is close to the final chosen scale factor.

This final match for the centred collimator with 2 mm configuration is shown in Fig. 16, where an

excellent match is observed.
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Figure 16: Scaled plot of the reconstructed Caen and LeCroy spectrum for the centred collimator with 2

mm PMMA configuration, for all 3 repeats recorded by the LeCroy. Caen digitiser data scaled to match

the LeCroy. x-scale factor found by χ2 minimisation and y-scale factor found by comparing the number of

events found in the peak. The reduced χ2 was 2.547. The LeCroy recorded over 60,000 events whereas the

Caen recorded over 740,000.

5.1.2 Tracker-Calorimeter Event Matching

With confidence in the proton energy calculation process, investigations were made into correlating tracker

measurements to calorimeter measurements. Since the energy of a proton defines well its range in matter, the

energy scale of the LeCroy was calibrated to a scale of proton range in water to provide the third dimension

to 2D tracker measurements. Simulations in GEANT4 were conducted for the range in water of low-energy

protons, between 4-40 MeV. The results of the simulation are shown in Fig. 17 and as expected, the range

in water follows a power law with proton energy [23]. By setting the peak energy of a configuration with

no PMMA absorber to correspond to a beam energy of 36 MeV, energies calculated from acquisitions were

converted to a range in water.

Routines were written to plot tracker data in 2D histograms. The tracker plot of one of the repeats of the

centred collimator with 2.01 mm PMMA configuration is shown in Fig. 18. The unit consists of 3 trackers,

which can record up to 5 protons each, each with 3 position coordinates. As this experiment relies on single

proton counting, a tracker event is only considered to be “good” if only one proton is recorded.

Each 2D position measurement made in the tracker had a timestamp, as did each acquisition recorded in

the oscilloscope, where good acquisitions now had an associated energy value. It was noted that the tracker is

capable of much faster data collection than the LeCroy scope, which is limited primarily by the length of an

acquisition (i.e. it cannot record data faster than the length of an acquisition, which was 1000 ns, necessary

to record a pulse in its entirety). This resulted in the tracker recording protons at finer intervals than the
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Figure 17: Results of a GEANT4 simulation of the range of protons for beam energies between 4-40 MeV.

The values 1 MeV and 2 MeV were excluded due to the lack of error bars. The scale between MeV to mVns

was found by setting the peak energy of the spectrum of a configuration with no PMMA absorber to 36

MeV. Plot provided by Laurent Kelleter, UCL.
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Figure 18: A 2D histogram of the x-y distribution of hits recorded in the tracker for one repeat of the centred

collimator with 2.01 mm PMMA configuration. Data placed into 100×100 bins.
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LeCroy, thus recording more events overall. This issue was dealt with by attempting to map each LeCroy

event onto the first tracker event that satisfied the matching criterion. The initial matching criterion was to

correlate events with timestamps within 500 ns of each other (smaller than the resolution of the LeCroy to

avoid cross-matching), but this resulted in very few matchings. It was then realised that the clocks of the

tracker and LeCroy drift further apart as time progresses, likely due to an inaccuracy in the clock of the

tracker (which is believed to operate at exactly 26 MHz). By plotting the time difference between the closest

tracker and LeCroy events, a straight-line equation was found to correctly increase the matching tolerance

as time progresses. This is shown in Fig. 19.
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Figure 19: A plot of the difference between consecutive timestamps recorded in the tracker and LeCroy

oscilloscope for one repeat of the half-covered collimator pair configuration. Points away from the line

correspond to false triggers from the tracker. The red line corresponds to the equation y = 500−(3.42×10−6)x

and increasing the tolerance window according to this gives acceptable matching of events. Plot provided

by Tony Price, Birmingham University.

Re-matching events with an increasing tolerance window produced an acceptable number of matchings.

Roughly 20% of the events are discarded when both LeCroy and tracker data sets are filtered to contain

only “good” events, with the remaining events then correlated. To best illustrate the 4D information of x, y,

range and frequency, the matched events were put into a 3D histogram of x and y (i.e. a 3D version of Fig.

18), but with the heights of the bars modified to be the average range of protons found in each x − y bin,

instead of the number of events. Then, the 2D number density plot (i.e. Fig. 18) was superimposed, to add

the 4th dimension. The result of such a plot for the centred collimator with 2.01 mm PMMA configuration

is shown in Fig. 20, which shows the expected deposition.
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Figure 20: Reconstructed deposition in 3D for one repeat of the centred collimator with 2.01 mm PMMA

configuration. The range is calculated from energy measurements by applying a power law found from a

GEANT4 simulation of proton range in water for energies between 4-40 MeV. The superimposed 2D plot

illustrates the XY intensity profile for the spot. Data placed into 100 × 100 bins and only bins with more

than 20 protons are shown. Over 21,000 proton events were matched.

5.2 Results

With the analysis tools fully developed, the energy spectra and 3D reconstructions for all configurations

tested is now presented. Recall that is expected that the range of protons will decrease with increasing

thickness of PMMA absorber and that physical features of a given configuration are reproduced, such as

a shift in proton position when the off-set collimator was used. The performance of the LeCroy against

the Caen in reconstruction of energy spectra is evaluated by the quality of spectrum matches. All spectra

produced in the same way as Fig. 16 and all 3D plots produced in the same way as Fig. 20.
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Figure 21: Scaled plot of the reconstructed Caen and LeCroy spectrum for the centred collimator with no

PMMA configuration. The approximate y-scale factor was used due to the noisy peak caused by current

fluctuations in proton beam. The reduced χ2 for the x-scale factor was 37.012. The LeCroy recorded over

86,000 events whereas the Caen recorded over 254,000.

Figure 22: Reconstructed deposition in 3D for the centred collimator with no PMMA configuration. Over

39,000 proton events were matched.
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Figure 23: Scaled plot of the reconstructed Caen and LeCroy spectrum for the centred collimator with 0.95

mm PMMA configuration. The reduced χ2 for the x-scale factor was 2.7507. The LeCroy recorded over

62,000 events whereas the Caen recorded over 838,000.

Figure 24: Reconstructed deposition in 3D for the centred collimator with 0.95 mm PMMA configuration.

Over 21,000 proton events were matched.
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Figure 25: Scaled plot of the reconstructed Caen and LeCroy spectrum for the centred collimator with 2.96

mm PMMA configuration. The reduced χ2 for the x-scale factor was 4.0214. The LeCroy recorded over

62,000 events whereas the Caen recorded over 1,035,000.

Figure 26: Reconstructed deposition in 3D for the centred collimator with 2.96 mm PMMA configuration.

Over 20,000 proton events were matched.
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Figure 27: Scaled plot of the reconstructed Caen and LeCroy spectrum for the centred collimator with 3.95

mm PMMA configuration. The reduced χ2 for the x-scale factor was 2.8666. The LeCroy recorded over

48,000 events whereas the Caen recorded over 992,000.

Figure 28: Reconstructed deposition in 3D for the centred collimator with 3.95 mm PMMA configuration.

Over 16,000 proton events were matched.
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Figure 29: Scaled plot of the reconstructed Caen and LeCroy spectrum for the centred collimator with 4.90

mm PMMA configuration. The reduced χ2 for the x-scale factor was 3.2383. The LeCroy recorded over

41,000 events whereas the Caen recorded over 909,000.

Figure 30: Reconstructed deposition in 3D for the centred collimator with 4.90 mm PMMA configuration.

Over 14,000 proton events were matched.
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Figure 31: Scaled plot of the reconstructed Caen and LeCroy spectrum for the centred collimator with 5.70

mm PMMA configuration. The reduced χ2 for the x-scale factor was 2.3773. The LeCroy recorded over

33,000 events whereas the Caen recorded over 391,000.

Figure 32: Reconstructed deposition in 3D for the centred collimator with 5.70 mm PMMA configuration.

Over 9,000 proton events were matched.
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Figure 33: Scaled plot of the reconstructed Caen and LeCroy spectrum for the off-centre collimator with no

PMMA configuration. The reduced χ2 for the x-scale factor was 2.7235. The LeCroy recorded over 44,000

events whereas the Caen recorded over 577,000.

Figure 34: Reconstructed deposition in 3D for the off-centre collimator with no PMMA configuration. Over

15,000 proton events were matched.
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Figure 35: Scaled plot of the reconstructed Caen and LeCroy spectrum for the off-centre collimator with

5.70 mm PMMA configuration. The approximate y-scale factor was used due to the noisy peak caused by

current fluctuations in proton beam. The reduced χ2 for the x-scale factor was 14.800. The LeCroy recorded

over 47,000 events whereas the Caen recorded over 1,350,000.

Figure 36: Reconstructed deposition in 3D for the off-centre collimator with 5.70 mm PMMA configuration.

Over 13,000 proton events were matched.
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Figure 37: Scaled plot of the reconstructed Caen and LeCroy spectrum for the double collimator with no

PMMA configuration. The approximate y-scale factor was used due to the noisy peak caused by current

fluctuations in proton beam. The reduced χ2 for the x-scale factor was 31.341. The LeCroy recorded over

54,000 events whereas the Caen recorded over 2,249,000.

Figure 38: Reconstructed deposition in 3D for the double collimator with no PMMA configuration. Over

17,000 proton events were matched.
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Figure 39: Scaled plot of the reconstructed Caen and LeCroy spectrum for the double collimator with 5.70

mm PMMA cover on both collimators configuration. The reduced χ2 for the x-scale factor was 3.2867. The

LeCroy recorded over 55,000 events whereas the Caen recorded over 904,000.

Figure 40: Reconstructed deposition in 3D for the double collimator with 5.70 mm PMMA cover on both

collimators configuration. Over 18,000 proton events were matched.
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Figure 41: Scaled plot of the reconstructed Caen and LeCroy spectrum for the double collimator with 3.95

mm PMMA cover on one collimator configuration. The reduced χ2 for the x-scale factor was 1.9955. The

LeCroy recorded over 42,000 events whereas the Caen recorded over 508,000.

Figure 42: Reconstructed deposition in 3D for the double collimator with 3.95 mm PMMA cover on one

collimator configuration. The collimator in the positive x-direction is covered. Protons travelling through

the covered collimator have, on average, shorter range and are less numerous. Over 17,000 proton events

were matched.
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The reconstructed 3D depositions demonstrate the expected results: depositions with the centred col-

limator (Fig. 22, 24, 20, 26, 28, 30 and 32) show the range of protons decreasing with increasing PMMA

thickness. Fig. 33 and 36 show a distinct shift of protons in the x-direction when the off-centred collimator is

used, as well as showing reduction in range when PMMA is added. When the double collimator is used (Fig.

38, 40 and 42), two distinct columns of protons are observed. Most notably in Fig. 42, protons travelling

through the covered collimator have on average shorter range and are less numerous.

The variation of the peak proton energy with thickness of PMMA is better illustrated using Fig. 43, which

shows the expected decrease of peak energy with increasing thickness of PMMA. While there is insufficient

data to draw any major conclusions, one can just begin to see a non-linear drop-off with thicker PMMA

absorber, which is to be expected given the shape of the Bragg peak. For thin absorbers, the relation is

approximately linear as one is still measuring energy from the tail of the Bragg peak. As the thickness

increases, the measurement of energy takes place further along the Bragg peak, which would suggest a non-

linear relationship beyond the tail of the peak. Further measurements made with thicker absorber sheets

would be needed to verify this.
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Figure 43: The variation in peak proton energy with thickness of PMMA absorber. Data from energy spectra

shown in Fig. 21, 35 and 37 are excluded. Error bars represent the standard deviations of the peak in the

energy spectra. For PMMA thicknesses that had multiple data sets, averages were calculated using standard

error propagation results [46].

Using the standard deviation of each energy peak, the energy resolution of the calorimeter was calculated

for each energy spectrum using [47]:

R =
2.355σ

E
(4)

where R is the fractional resolution of the detector, 2.355σ is approximately the full-width at half-

maximum of the (Gaussian-like) peak, σ is the standard deviation and E is the peak energy. The energy
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resolution of the calorimeter was found to range between 3.5% and 9%, with energy resolution worsening at

lower energies, as expected.

Largely due to current fluctuations in the cyclotron, the spectra shown in Fig. 21, 35 and 37 do not

exhibit clean peaks in energy. For each of these spectra, the LeCroy appears to perform better than the

Caen, as shown by the cleaner, narrower peaks. While this may be due to the LeCroy recording fewer events,

it could also be the effects of the pile-up filtering measures put in place with the LeCroy. It should also be

noted that for such data sets, the approximate y-scale factor was used in the scaling process, due to the

number of events in the peak no longer being a reliable measure across the LeCroy and the Caen.

Finally, from all the runs that demonstrated clean energy spectra, it was expected that the x- and

(normalised) y- scale factors would converge on some value. That is to say, some conversion factor to convert

energies measured in the Caen to the mVns unit used in the LeCroy, and some frequency conversion factor

to characterise the difference in performance in gathering protons. When calculating the y-scale factors by

dividing the number of events in the peak of the energy spectrum of the Caen divided by the number of

events in the peak of the LeCroy, it was found that the y-scale factor had to be multiplied by a factor of 1
4

in order to give a reasonable result. Given that the Caen digitiser has 4 times as many bins as the LeCroy,

it was thought that this was the source. Fig. 44 shows this factor being recovered in a scatter plot of the x-

and normalised inverse y-scale factors. The average x-scale factor was found to be 0.94656 and the average

normalised inverse y-scale factor was found to be 3.9998.
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Figure 44: Scatter plot of the x-scale factors and inverse normalised y-scale factors for all energy spectra

except those shown in Fig. 21, 35 and 37. y-scale factors were normalised by multiplying by the total number

of LeCroy events divided by the total number of Caen events.

40



6 Conclusions

Both of the goals set out for this experiment have been achieved. Energy spectra for a variety of configurations

were successfully reconstructed by the LeCroy oscilloscope, where it consistently performed as well as the

Caen digitiser. Proof-of-principle has been provided for the use of the calorimeter and tracker simultaneously

for proton position and range measurements: the 3D plots demonstrate successful reconstruction of the dose

deposition, recovering physical features of configurations to sub-mm precision.

Recommended future work consists of performing similar beam tests described here but at higher particle

rates. As mentioned previously, the detector used in this experiment cannot be used for clinical applications

due to the particle rates being too high to resolve individual protons. For such uses, one would require

a longer, segmented scintillator detector where the total light output of each slice is measured. However,

one can still test how far the set up used in this experiment can go before saturation of the scintillator

and/or PMT. If operating with high particle rates, one could reduce the light output of the scintillator by

covering in black card or by spray-painting black instead of covering with foil, thus minimising the chance of

saturation. One could also test a similar scintillator block as the one used in this experiment, to check the

reproducibility of the results presented here. Finally, any future tests should endeavour to rectify the issue

of the expanding calorimeter-tracker event matching tolerance window by supplying a reference sinusoidal

signal from the LeCroy oscilloscope to the tracker.

With the future tests in mind, it is also suggested that the pile-up filtering routines for the LeCroy be

improved further as pile-up will become a greater issue at higher beam currents. The work presented in

this report largely focused on correctly implementing integration methods for the external trigger setup and

correlating measurements across detectors rather than pile-up filtration. Since the work was successful in

the first two aims, it is likely that the latter will make up a large part of future analysis. It is suggested

that the current method of evaluating a baseline sigma in various regions in an acquisition be abandoned in

favour of a routine that can find the number of pulses in an acquisition. While this would be challenging to

implement, it would make the filtering more efficient and would tackle some of the already prevalent issues,

such as filtering pile-up where there are overlapping pulses.
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A Analysis Code

What follows is the C++ code written for this project for the analysis of calorimeter data (from both

the Caen digitiser and LeCroy oscilloscope) and PRaVDA tracker data, which is based on code written in

previous years.

Caen.h

#inc lude <s t r i ng>

#inc lude <vector>

#inc lude <fstream>

#inc lude <sstream>

#inc lude <TCanvas . h>

#inc lude <TApplicat ion . h>

#inc lude <TGraph . h>

#inc lude <TH1. h>

us ing namespace std ;

#i f n d e f CAEN H

#d e f i n e CAEN H

c l a s s Caen {
pub l i c :

vector<double> bins ;

vector<double> counts ;

Caen ( vector<double> bins , vector<double> counts ) {
th i s−>bins = bins ;

th i s−>counts = counts ;

}
˜Caen ( ) {

th i s−>bins . c l e a r ( ) ;

th i s−>counts . c l e a r ( ) ;

}
vector<double> getBins ( ) {

re turn th i s−>bins ;

}
vector<double> getCounts ( ) {

re turn th i s−>counts ;

}
} ;

Caen readCaen ( s t r i n g f i l ename ) ;
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void plotCaen ( Caen run , s t r i n g name , s t r i n g dest , i n t xhigh ,

TAppl icat ion ∗ app ) ;

void plotCaenHist ( Caen run , s t r i n g name , s t r i n g dest , i n t xhigh ,

TAppl icat ion ∗ app ) ;

#e n d i f /∗ CAEN H ∗/

Caen.cpp

#inc lude ”Caen . h”

Caen readCaen ( s t r i n g f i l ename ) {
i f s t r e a m f i l e ( f i l ename , i f s t r e a m : : in ) ;

vector<double> bins ;

vector<double> counts ;

s t r i n g l i n e ;

whi l e ( g e t l i n e ( f i l e , l i n e ) ) {
s t r i ng s t r eam ss ( l i n e ) ;

i n t a , b ;

ss>>a>>b ;

b ins . push back ( a ) ;

counts . push back (b ) ;

}
Caen run = Caen ( bins , counts ) ;

r e turn run ;

}
void plotCaen ( Caen run , s t r i n g name , s t r i n g dest , i n t xhigh ,

TAppl icat ion ∗ app ) {
TGraph∗ graph = new TGraph( run . getBins ( ) . s i z e ( ) , run . getBins ( ) . data ( ) ,

run . getCounts ( ) . data ( ) ) ;

graph−>GetXaxis()−>SetL imits (0 , xhigh ) ;

graph−>GetXaxis()−>S e t T i t l e (”ADC Counts (mV ns ) ” ) ;

graph−>GetYaxis()−>S e t T i t l e (” Frequency ” ) ;

TCanvas∗ c1 = new TCanvas (” Caen ADC Spectrum ” , ”Caen ADC Spectrum ” ,

1920 , 1080 ) ;

des t = dest+”/”+name+”. pdf ” ;

const char ∗ d e s t c = dest . c s t r ( ) ;

const char ∗ name c = name . c s t r ( ) ;

graph−>SetNameTitle ( name c , name c ) ;

graph−>Draw ( ) ;

c1−>Update ( ) ;

c1−>Print ( d e s t c ) ;
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app−>Run( graph ) ;

d e l e t e graph ;

d e l e t e c1 ;

}
void plotCaenHist ( Caen run , s t r i n g name , s t r i n g dest , i n t xhigh ,

TAppl icat ion ∗ app ) {
s t r i n g t i t l e = name+”;ADC Counts (mV ns ) ; Frequency ” ;

const char ∗ t i t l e c = t i t l e . c s t r ( ) ;

TH1D∗ h i s t = new TH1D(”ADC Counts ” , t i t l e c , run . getBins ( ) . s i z e ( ) ,

0 , xhigh ) ;

f o r ( i n t i =0; i<run . getBins ( ) . s i z e ( ) ; i++) {
i n t bin = run . getBins ( ) [ i ] ;

i n t f r e q = run . getCounts ( ) [ i ] ;

f o r ( i n t j =0; j<f r e q ; j++) {
h i s t−>F i l l ( bin ) ;

}
}
TCanvas∗ c1 = new TCanvas (” Caen ADC Spectrum ” , ”Caen ADC Spectrum ” ,

1920 , 1080 ) ;

des t = dest+”/”+name+”. pdf ” ;

const char ∗ d e s t c = dest . c s t r ( ) ;

h i s t−>Draw ( ) ;

c1−>Update ( ) ;

c1−>Print ( d e s t c ) ;

app−>Run( h i s t ) ;

d e l e t e h i s t ;

d e l e t e c1 ;

}

Tracker.h

#inc lude <vector>

#inc lude <sstream>

#inc lude <s t r i ng>

#inc lude <iostream>

#inc lude <fstream>

#inc lude <TApplicat ion . h>

#inc lude <TCanvas . h>

#inc lude <TH2. h>

us ing namespace std ;

#i f n d e f TRACKER H
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#d e f i n e TRACKER H

c l a s s Tracker {
pub l i c :

double timestamp ;

vector<double> coords ; //A vecto r o f 60 numbers : 4 t racke r s ,

up to 5 protons each , 3 coords . 3 rd coord always 198 .

bool goodHit ; //Only want t r a c k e r data with one recorded h i t

Tracker ( double timestamp , vector<double> coords , bool goodHit ) {
th i s−>timestamp = timestamp ;

th i s−>coords = coords ;

th i s−>goodHit = goodHit ;

}
˜ Tracker ( ) {

th i s−>coords . c l e a r ( ) ;

}
double getTimestamp ( ) {

re turn th i s−>timestamp ;

}
vector<double> getCoords ( ) {

re turn th i s−>coords ;

}
bool getGoodHit ( ) {

re turn th i s−>goodHit ;

}
} ;

vector<Tracker> readTracker ( s t r i n g f i l ename ) ;

void h i s tTracke r ( vector<Tracker> run , i n t bins , s t r i n g name , s t r i n g dest ,

TAppl icat ion ∗ app ) ;

#e n d i f /∗ TRACKER H ∗/

Tracker.cpp

#inc lude ” Tracker . h”

vector<Tracker> readTracker ( s t r i n g f i l ename ) {
cout<<”Loading t r a ck e r data ...”<< endl ;

i f s t r e a m f i l e ( f i l ename , i f s t r e a m : : in ) ;

vector<Tracker> run ;

s t r i n g l i n e ;
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whi le ( g e t l i n e ( f i l e , l i n e ) ) {
bool goodHit = f a l s e ;

s t r i ng s t r eam ss ( l i n e ) ;

double timestamp ;

ss>>timestamp ;

vector<double> coords ;

f o r ( i n t i =0; i <60; i++) {
double a ;

ss>>a ;

coords . push back ( a ) ;

}
i f ( coords [ 3 ] == −1) {

goodHit = true ;

}
Tracker h i t = Tracker ( timestamp , coords , goodHit ) ;

run . push back ( h i t ) ;

}
cout<<”The t r a c k e r f i l e conta ined a t o t a l o f ”<<run . s i z e ()<<

” h i t s .”<<endl ;

r e turn run ;

}
void h i s tTracke r ( vector<Tracker> run , i n t bins , s t r i n g name , s t r i n g dest ,

TAppl icat ion ∗ app ) {
s t r i n g t i t l e = name+”;x (mm) ; y (mm) ” ;

const char ∗ name c = name . c s t r ( ) ;

const char ∗ t i t l e c = t i t l e . c s t r ( ) ;

TH2D∗ h i s t = new TH2D(” Tracker Data ” , t i t l e c , bins , −20.0 , 20 . 0 ,

bins , −20.0 , 2 0 . 0 ) ;

TCanvas∗ c1 = new TCanvas ( name c , name c , 1920 , 1080 ) ;

f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {
i f ( run [ i ] . getGoodHit ( ) ) { //Removing t h i s check w i l l p l o t

bad a c q u s i t i o n s too

h i s t−>F i l l ( run [ i ] . getCoords ( ) [ 0 ] ,

run [ i ] . getCoords ( ) [ 1 ] ) ;

}
}
const char ∗ d e s t c ;

des t = dest+”/”+name+”. pdf ” ;

d e s t c = dest . c s t r ( ) ;

h i s t−>Draw(”CONT0, COLZ” ) ;

c1−>Update ( ) ;
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c1−>Print ( d e s t c ) ;

app−>Run( h i s t ) ;

d e l e t e h i s t ;

d e l e t e c1 ;

}

LeCroy.h

#inc lude <TMath . h>

#inc lude <TH1. h>

#inc lude <TH3. h>

#inc lude <TCanvas . h>

#inc lude <TColor . h>

#inc lude <TPad . h>

#inc lude <TGraph . h>

#inc lude <TROOT. h>

#inc lude <TStyle . h>

#inc lude <TApplicat ion . h>

#inc lude <boost / l e x i c a l c a s t . hpp>

#inc lude <vector>

#inc lude <cmath>

#inc lude <fstream>

#inc lude <s t r i ng>

#inc lude <c s t r i n g>

#inc lude <sstream>

#inc lude <time . h>

#inc lude <iostream>

#inc lude ”Caen . h”

#inc lude ” Tracker . h”

us ing namespace std ;

#i f n d e f LECROY H

#d e f i n e LECROY H

c l a s s Parameters {
pub l i c :

//USER−DEFINED VARIABLES

// t o l e r a n c e f o r what can be cons ide red background

double maxBaselineSigma ;

double window ; // l ength o f time to i n t e g r a t e over

i n t b ins ; //Number o f histogram bins

i n t xlow ; //Upper and lower l i m i t s o f histogram x−a x i s
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i n t xhigh ;

Parameters ( double maxBaselineSigma , double window , i n t bins ,

i n t xlow , i n t xhigh ) {
th i s−>maxBaselineSigma = maxBaselineSigma ;

th i s−>window = window ;

th i s−>bins = bins ;

th i s−>xlow = xlow ;

th i s−>xhigh = xhigh ;

}
double getMaxSigma ( ) {

re turn th i s−>maxBaselineSigma ;

}
double getWindow ( ) {

re turn th i s−>window ;

}
i n t getBins ( ) {

re turn th i s−>bins ;

}
i n t getXlow ( ) {

re turn th i s−>xlow ;

}
i n t getXhigh ( ) {

re turn th i s−>xhigh ;

}
void setMaxSigma ( double s ) {

th i s−>maxBaselineSigma = s ;

}
void setWindow ( double w) {

th i s−>window = w;

}
void se tB ins ( i n t b) {

th i s−>bins = b ;

}
void setXlow ( i n t l ) {

th i s−>xlow = l ;

}
void setXhigh ( i n t h) {

th i s−>xhigh = h ;

}
} ;
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c l a s s LeCroyData {
pub l i c :

s t r i n g f i leName ; // F i l e d i r e c t o r y on d i sk

s t r i n g vertUnit ; // V e r t i c a l a x i s un i t

s t r i n g hor i zUni t ; // Hor i zonta l a x i s un i t

s t r i n g timestamp ; //Time o f t r i g g e r

shor t commType ; // e i t h e r 0 f o r byte , or 1 f o r word

f l o a t v e r t i c a l G a i n ;

// f l o a t i n g va lue s from raw data : v e r t i c a l G a i n ∗data − v e r t i c a l O f f s e t

f l o a t v e r t i c a l O f f s e t ;

f l o a t hor i zUnce r ta in ty ;

i n t pointsPerWindow ; //number o f po in t s in the i n t e g r a t i o n window

double dx ;

// array o f t r i g g e r times , r e l a t i v e to the f i r s t t r i g g e r

double ∗ t r ig t imeArray ;

// array o f s t a r t o f data c o l l e c t i o n f o r each a c q u i s i t i o n , r e l a t i v e

to that a c q u i s i t i o n t r i g g e r

double ∗ hor i zOf f s e tAr ray ;

// array o f time va lue s f o r a l l a c q u i s i t i o n s be f o r e b a s e l i n e

sub t ra c t i on

double ∗ timeArray ;

// array o f p . d . va lue s f o r a l l a c q u i s i t i o n s be f o r e b a s e l i n e

sub t ra c t i on

double ∗waveArray ;

//LIST OF VARIABLES TO CALCULATE

i n t pointsPerAcq ; //number o f po in t s per a c q u i s i t i o n

long subArrayCount ; //number o f a c q u i s i t i o n s

vector<bool> goodHits ; // index o f good/bad l a b e l s f o r a c q u i s i t i o n s

// l i s t o f a c q u i s i t i o n s in vec to r format , b a s e l i n e subtracted

vector<double∗> Acqs ;

vector<double∗> Times ;

vector<double> spectrumADCCounts ; // i n t e g r a l s o f a c q u i s i t i o n s

vector<double> spectrumTime ; // t imes o f i n t e g r a t e d a c q u i s i t i o n s

LeCroyData ( s t r i n g fi leName , s t r i n g vertUnit , s t r i n g hor izUnit ,
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s t r i n g timestamp , shor t commType , f l o a t ve r t i ca lGa in ,

f l o a t v e r t i c a l O f f s e t , f l o a t hor i zUncerta inty ,

double ∗ tr igt imeArray , double ∗ hor i zOf f s e tArray ,

double ∗ waveArray , double ∗ timeArray , i n t pointsPerAcq ,

long subArrayCount , double dx , i n t pointsPerWindow ,

vector<double∗> Acqs , vector<double∗> Times ,

vector<bool> goodHits , vector<double> spectrumTime ,

vector<double> spectrumADCCounts ) {
th i s−>f i leName = fi leName ;

th i s−>vertUnit = vertUnit ;

th i s−>hor i zUni t = hor i zUni t ;

th i s−>timestamp = timestamp ;

th i s−>commType = commType ;

th i s−>v e r t i c a l G a i n = v e r t i c a l G a i n ;

th i s−>v e r t i c a l O f f s e t = v e r t i c a l O f f s e t ;

th i s−>hor i zUncer ta in ty = hor i zUncer ta in ty ;

th i s−>t r ig t imeArray = tr ig t imeArray ;

th i s−>hor i zOf f s e tAr ray = hor i zOf f s e tAr ray ;

th i s−>waveArray = waveArray ;

th i s−>timeArray = timeArray ;

th i s−>pointsPerAcq = pointsPerAcq ;

th i s−>subArrayCount = subArrayCount ;

th i s−>dx = dx ;

th i s−>pointsPerWindow = pointsPerWindow ;

th i s−>Acqs = Acqs ;

th i s−>Times = Times ;

th i s−>spectrumTime = spectrumTime ;

th i s−>spectrumADCCounts = spectrumADCCounts ;

th i s−>goodHits = goodHits ;

}
˜LeCroyData ( ) {

th i s−>Acqs . c l e a r ( ) ;

th i s−>goodHits . c l e a r ( ) ;

th i s−>spectrumTime . c l e a r ( ) ;

th i s−>spectrumADCCounts . c l e a r ( ) ;

}
s t r i n g getFileName ( ) {

re turn th i s−>f i leName ;

}
s t r i n g getVertUnit ( ) {

re turn th i s−>vertUnit ;
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}
s t r i n g getHor izUnit ( ) {

re turn th i s−>hor i zUni t ;

}
s t r i n g getTimestamp ( ) {

re turn th i s−>timestamp ;

}
shor t getCommType ( ) {

re turn th i s−>commType ;

}
f l o a t ge tVer t i ca lGa in ( ) {

re turn th i s−>v e r t i c a l G a i n ;

}
f l o a t g e t V e r t i c a l O f f s e t ( ) {

re turn th i s−>v e r t i c a l O f f s e t ;

}
f l o a t getHor i zUncer ta inty ( ) {

re turn th i s−>hor i zUncer ta in ty ;

}
double ∗ getTrigTimeArray ( ) {

re turn th i s−>t r ig t imeArray ;

}
double ∗ getHor i zOf f s e tArray ( ) {

re turn th i s−>hor i zOf f s e tAr ray ;

}
// Getter f o r vec to r o f o s c i l l o s c o p e vo l tage va lue s

double ∗ getWaveArray ( ) {
re turn th i s−>waveArray ;

}
// Getter f o r vec to r o f o s c i l l o s c o p e time va lue s

double ∗ getTimeArray ( ) {
re turn th i s−>timeArray ;

}
i n t getPointsPerAcq ( ) {

re turn th i s−>pointsPerAcq ;

}
long getSubAcqCount ( ) {

re turn th i s−>subArrayCount ;

}
double getDx ( ) {

re turn th i s−>dx ;
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}
i n t getPointsPerWindow ( ) {

re turn th i s−>pointsPerWindow ;

}
void setPointsPerWindow ( i n t p) {

th i s−>pointsPerWindow = p ;

}
vector<double∗> getAcqs ( ) {

re turn th i s−>Acqs ;

}
void appendAcqs ( double ∗ p) {

th i s−>Acqs . push back (p ) ;

}
vector<double∗> getTimes ( ) {

re turn th i s−>Times ;

}
void appendTimes ( double ∗ p) {

th i s−>Times . push back (p ) ;

}
vector<double> getSpectrumTime ( ) {

re turn th i s−>spectrumTime ;

}
void appendSpectrumTime ( double i ) {

th i s−>spectrumTime . push back ( i ) ;

}
vector<double> getSpectrumADCCounts ( ) {

re turn th i s−>spectrumADCCounts ;

}
void appendSpectrumADCCounts ( double i ) {

th i s−>spectrumADCCounts . push back ( i ) ;

}
vector<bool> getGoodHits ( ) {

re turn th i s−>goodHits ;

}
void appendGoodHits ( bool b) {

th i s−>goodHits . push back (b ) ;

}
s t r i n g getHeader ( ){

// Returns a s t r i n g d e s c r i b i n g the f i l e

o s t r ing s t r eam header ;

header<<”F i l e name : ”<<f i leName<<endl ;
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header<<”Timestamp : ”<<timestamp<<endl ;

header<<”Number o f a c q u i s i t i o n s : ”<<subArrayCount<<endl ;

header<<”Points per a c q u i s i t i o n : ”<<pointsPerAcq<<endl ;

header<<”V e r t i c a l un i t : ”<<vertUnit<<endl ;

header<<”Timing unce r ta in ty : ”<<hor i zUncerta inty<<endl ;

header<<”Hor i zonta l un i t : ”<<hor izUnit<<endl ;

double a , b ;

a = timeArray [ 0 ] ;

b = timeArray [ pointsPerAcq∗subArrayCount −1] ;

header<<”F i r s t and l a s t t imepo int s : ”<<a<<”, ”

<<b<<” ( span : ”<<(b−a)<<hor izUnit<<” )”<<endl ;

r e turn header . s t r ( ) ;

}
} ;

c l a s s Hit {
pub l i c :

double timestamp ;

double x ;

double y ;

double energy ;

Hit ( double timestamp , double x , double y , double energy ) {
th i s−>timestamp = timestamp ;

th i s−>x = x ;

th i s−>y = y ;

th i s−>energy = energy ;

}
double getTimestamp ( ) {

re turn th i s−>timestamp ;

}
double getX ( ) {

re turn th i s−>x ;

}
double getY ( ) {

re turn th i s−>y ;

}
double getEnergy ( ) {

re turn th i s−>energy ;

}
} ;

//−−−−−−−−−−−−−−−METHODS−−−−−−−−−−−−−−−\\
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//Data conver s i on

shor t getShort ( i n t byteLocat ion ) ;

// Creates a long from the f i l e B u f f e r , s t a r t i n g at byteLocat ion

long getLong ( i n t byteLocat ion ) ;

// Creates a f l o a t from the f i l e B u f f e r , s t a r t i n g at byteLocat ion

f l o a t ge tF loat ( i n t byteLocat ion ) ;

// Creates a double from the f i l e B u f f e r , s t a r t i n g at byteLocat ion

double getDouble ( i n t byteLocat ion ) ;

// Creates an i n t from the f i l e B u f f e r , s t a r t i n g at byteLocat ion

i n t g e t In t ( i n t byteLocat ion ) ;

// Returns the byte at byteLocat ion in the f i l e B u f f e r as a s igned char

s igned char getByte ( i n t byteLocat ion ) ;

// Creates a s t r i n g o f 16 c h a r a c t e r s from the f i l e B u f f e r ,

s t a r t i n g at byteLocat ion

s t r i n g get16CharStr ing ( i n t byteLocat ion ) ;

// Creates a s t r i n g o f byteLength c h a r a c t e r s from the f i l e B u f f e r ,

s t a r t i n g at byteLocat ion

s t r i n g getText ( i n t byteLocation , long byteLength ) ;

// Reading

bool i sTrace ( s t r i n g f i leName ) ;

LeCroyData r e a d F i l e ( s t r i n g fi leName , Parameters P) ;

vector<LeCroyData> Load ( i n t n , s t r i n g path , Parameters P) ;

// Ana lys i s

double ∗ getRawAcqWave( i n t segment , LeCroyData l cd ) ;

double ∗ getRawAcqTime ( i n t segment , LeCroyData l cd ) ;

double meanEstimateBasel ine ( double ∗ data , double ∗ time , LeCroyData &lcd ,

Parameters P) ;

void b a s e l i n e S u b t r a c t i o n ( LeCroyData &lcd , Parameters P) ;

double compos i t e In teg ra t e ( double ∗ goodAcq , i n t pointsPerWindow ,

i n t pointsPerAcq , double dx ) ;

void buildSpectrum ( LeCroyData &lcd ) ;

vector<LeCroyData> Analys i s ( i n t n , s t r i n g path , Parameters P) ;

void plotRawWaveform ( LeCroyData lcd , i n t index , s t r i n g name , s t r i n g dest ,

TAppl icat ion ∗ app ) ;

void plotSubtractedWaveform ( LeCroyData lcd , i n t index , s t r i n g name ,

s t r i n g dest , TAppl icat ion ∗ app ) ;

void Histogram ( vector<LeCroyData> run , Parameters P, s t r i n g name ,

s t r i n g dest , TAppl icat ion ∗ app ) ;

void timeHistogram ( vector<LeCroyData> run , Parameters P, s t r i n g name ,
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s t r i n g dest , TAppl icat ion ∗ app ) ;

void Write ( vector<LeCroyData> run , s t r i n g name , s t r i n g des t ) ;

void program ( TAppl icat ion ∗ app , Parameters P) ;

void plotBoth ( vector<LeCroyData> run , Caen caen , Parameters P, s t r i n g name ,

s t r i n g dest , TAppl icat ion ∗ app ) ;

vector<Hit> Match ( vector<double> l eCroyEnerg ies , vector<double> leCroyTime ,

vector<bool> goodHits , vector<Tracker> t r a c k e r ) ;

void writeMatch ( vector<Hit> run , s t r i n g name , s t r i n g des t ) ;

void plot3D ( vector<Hit> h i t s , i n t bins , s t r i n g name , s t r i n g dest ,

TAppl icat ion ∗ app ) ;

#e n d i f /∗ LECROY H ∗/

LeCroy.cpp

#inc lude ”LeCroy . h”

char ∗ f i l e B u f f e r ; //Dynamic v a r i a b l e f o r s t o r i n g the content s o f the f i l e

bool i sTrace ( s t r i n g f i leName ) {
// I d e n t i f i e s whether a f i l e name r e p r e s e n t s a LeCroy t ra c e f i l e based

on the f i l e ex t ens i on

s t r i n g la s tFour = fi leName . subs t r ( f i leName . l ength ( ) − 4 ) ;

i f ( l a s tFour == ” . t r c ”){
re turn true ;

}
re turn f a l s e ;

}
shor t getShort ( i n t byteLocat ion ){

//Get the value o f a f l o a t from byteLocat ion in the f i l e B u f f e r

shor t s ;

char bytes [ s i z e o f s ] ;

f o r ( i n t n = 0 ; n<( s i z e o f s ) ; n++){
// S e l e c t bytes to form the shor t

bytes [ n ] = f i l e B u f f e r [ n+byteLocat ion ] ;

}
memcpy(&s , &bytes , s i z e o f s ) ; //Copy the b i t pattern in to the shor t

re turn s ;

}
long getLong ( i n t byteLocat ion ){

//Get the vlaue o f a long from byteLocat ion in the f i l e B u f f e r
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long l ;

char bytes [ s i z e o f l ] ;

f o r ( i n t n = 0 ; n<( s i z e o f l ) ; n++){
// S e l e c t bytes to form the long

bytes [ n ] = f i l e B u f f e r [ n+byteLocat ion ] ;

}
memcpy(&l , &bytes , s i z e o f l ) ; //Copy the b i t pattern in to the long

return l ;

}
i n t g e t In t ( i n t byteLocat ion ){

//Get the value o f an i n t from byteLocat ion in the f i l e B u f f e r

i n t i ;

char bytes [ s i z e o f i ] ;

f o r ( i n t n = 0 ; n<( s i z e o f i ) ; n++){
// S e l e c t bytes to form the i n t

bytes [ n ] = f i l e B u f f e r [ n+byteLocat ion ] ;

}
memcpy(&i , &bytes , s i z e o f i ) ; //Copy the b i t pattern in to the i n t

re turn i ;

}
f l o a t ge tF loat ( i n t byteLocat ion ){

//Get the value o f a f l o a t from byteLocat ion in the f i l e B u f f e r

f l o a t f ;

char bytes [ s i z e o f f ] ;

f o r ( i n t n = 0 ; n<( s i z e o f f ) ; n++){
// S e l e c t bytes to form the f l o a t

bytes [ n ] = f i l e B u f f e r [ n+byteLocat ion ] ;

}
memcpy(&f , &bytes , s i z e o f f ) ; //Copy the b i t pattern in to the f l o a t

re turn f ;

}
double getDouble ( i n t byteLocat ion ){

//Get the value o f a double from byteLocat ion in the f i l e B u f f e r

double d ;

char bytes [ s i z e o f d ] ;

f o r ( i n t n = 0 ; n<( s i z e o f d ) ; n++){
// S e l e c t bytes to form the double

bytes [ n ] = f i l e B u f f e r [ n+byteLocat ion ] ;

}
memcpy(&d , &bytes , s i z e o f d ) ; //Copy the b i t pattern in to the double

re turn d ;
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}
s igned char getByte ( i n t byteLocat ion ){

//Get the value o f a s igned char from byteLocat ion in the f i l e B u f f e r

s igned char b = f i l e B u f f e r [ byteLocat ion ] ;

r e turn b ;

}
s t r i n g getText ( i n t byteLocation , long byteLength ){

// Converts byteLength bytes from the f i l e B u f f e r , s t a r t i n g from

byteLocation , i n to a s t r i n g

os t r ing s t r eam text ;

//For each charac t e r in the s p e c i f i e d r eg i on o f the f i l e B u f f e r

f o r ( i n t n = 0 ; n<byteLength ; n++){
//Append the charac t e r to the s t r i n g

text<<f i l e B u f f e r [ byteLocat ion+n ] ;

}
re turn text . s t r ( ) ;

}
s t r i n g get16CharStr ing ( i n t byteLocat ion ){

// Converts bytes from the f i l e B u f f e r , s t a r t i n g from byteLocation ,

i n to a 16− cha rac t e r s t r i n g

return getText ( byteLocation , 1 6 ) ;

}
s t r i n g makeTimestamp ( i n t byteLocat ion ){

// Constructs a s t r i n g d e s c r i b i n g the date and time at which the

f i l e was c rea ted as s p e c i f i e d in the LeCroy X−Stream manual

o s t r ing s t r eam stamp ;

//Get t iming i n f o

double s ec = getDouble ( byteLocat ion ) ;

s igned char min = getByte ( byteLocat ion + 8 ) ;

s igned char hrs = getByte ( byteLocat ion + 9 ) ;

s igned char day = getByte ( byteLocat ion + 1 0 ) ;

s igned char mon = getByte ( byteLocat ion + 1 1 ) ;

shor t yrs = getShort ( byteLocat ion + 1 2 ) ;

// Construct the s t r i n g

stamp<<( i n t ) day<<”/”<<( i n t )mon<<”/”<<yrs<<” @ ”<<( i n t ) hrs<<”:”<<

( i n t )min<<”:”<<s ec ;

r e turn stamp . s t r ( ) ;

}
LeCroyData r e a d F i l e ( s t r i n g fi leName , Parameters p) {
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i f ( ! i sTrace ( f i leName ) ) {
throw ”Given f i l ename i s not a LeCroy binary t r a c e f i l e ! ” ;

}
//open the f i l e at the l a s t byte to determine f i l e s i z e in bytes

i f s t r e a m t a r g e t ( f i leName , i o s : : in | i o s : : b inary | i o s : : ate ) ;

i n t f i l e S i z e = t a r g e t . t e l l g ( ) ;

// I d e n t i f y the byte corre spond ing to the s t a r t o f ”WAVEDESC”

char memblock [ 5 0 ] ;

t a r g e t . seekg ( 0 ) ;

t a r g e t . read ( memblock , 5 0 ) ;

s t r i n g b l o ckSt r i ng ( memblock ) ;

i n t wavedescIndex = b lockSt r ing . f i n d (”WAVEDESC” ) ;

// read the f i l e i n to memory

t a r g e t . seekg ( 0 ) ;

f i l e B u f f e r = new char [ f i l e S i z e ] ;

t a r g e t . read ( f i l e B u f f e r , f i l e S i z e ) ;

t a r g e t . c l o s e ( ) ;

// read in each data f i e l d from i t s known byte l o c a t i o n

shor t commType = getShort ( wavedescIndex + 3 2 ) ;

long waveDescr iptorS ize = getLong ( wavedescIndex + 3 6 ) ;

long userTextS ize = getLong ( wavedescIndex + 4 0 ) ;

long t r i g t imeArrayS i z e = getLong ( wavedescIndex + 4 8 ) ;

long waveArraySize = getLong ( wavedescIndex + 6 0 ) ;

f l o a t v e r t i c a l G a i n = getF loat ( wavedescIndex + 1 5 6 ) ;

f l o a t v e r t i c a l O f f s e t = getF loat ( wavedescIndex + 1 6 0 ) ;

f l o a t h o r i z I n t e r v a l = getF loat ( wavedescIndex + 1 7 6 ) ;

s t r i n g vertUnit = getText ( wavedescIndex + 196 , 4 8 ) ;

s t r i n g hor i zUni t = getText ( wavedescIndex + 244 , 4 8 ) ;

f l o a t hor i zUnce r ta in ty = getF loat ( wavedescIndex + 2 9 2 ) ;

s t r i n g timestamp = makeTimestamp ( wavedescIndex + 2 9 6 ) ;

i n t subArrayCount = tr i g t imeArrayS i z e /(2∗ s i z e o f ( double ) ) ;

//Loads the TRIGTIME ARRAY block in to a pa i r o f double [ ] s

double ∗ t r ig t imeArray = new double [ subArrayCount ] ;

double ∗ hor i zOf f s e tAr ray = new double [ subArrayCount ] ;

f o r ( i n t i = 0 ; i<subArrayCount ; i ++){
t r ig t imeArray [ i ] = 1e9 ∗( getDouble ( wavedescIndex +
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( i n t ) waveDescr iptorS ize + ( i n t ) userTextS ize +

2∗ i ∗ s i z e o f ( double ) ) ) ;

ho r i zOf f s e tAr ray [ i ] = 1e9 ∗( getDouble ( wavedescIndex +

( i n t ) waveDescr iptorS ize + ( i n t ) userTextS ize +

(2∗ i +1)∗ s i z e o f ( double ) ) ) ;

}
double ∗ waveArray ;

i f (commType == 0){ // I f the WAVEARRAY i s expres sed in bytes . . .

waveArray = new double [ waveArraySize ] ;

//Load the waveArray us ing bytes

f o r ( i n t i = 0 ; i<waveArraySize ; i ++){
waveArray [ i ] = 1e3 ∗ ( ( double ) v e r t i c a l G a i n ∗getByte (

wavedescIndex + waveDescr iptorS ize + userTextS ize

+ t r i g t imeArrayS i z e + i ) −
( double ) v e r t i c a l O f f s e t ) ;

}
}
e l s e {

waveArray = new double [ waveArraySize / 2 ] ;

// I f the WAVEARRAY i s expres sed in words , load the waveArray

us ing words

f o r ( i n t i = 0 ; i<waveArraySize /2 ; i ++){
waveArray [ i ] = 1e3 ∗ ( ( double ) v e r t i c a l G a i n ∗ getShort (

wavedescIndex + waveDescr iptorS ize + userTextS ize

+ t r i g t imeArrayS i z e + 2∗ i ) −
( double ) v e r t i c a l O f f s e t ) ;

}
}
// Ca lcu la te the number o f po in t s in each t r i g g e r e d a c q u i s i t i o n

i n t pointsPerAcq = waveArraySize /( subArrayCount ∗(commType+1)) ;

// Ca l cu la te the time in seconds o f each data po int in the

waveArray and append i t to the timeArray

double ∗ timeArray = new double [ subArrayCount∗pointsPerAcq ] ;

f o r ( i n t i = 0 ; i<subArrayCount ; i ++){
f o r ( i n t j = 0 ; j<pointsPerAcq ; j++){

timeArray [ j + i ∗pointsPerAcq ] = ( hor i zOf f s e tAr ray [ i ]

+ tr ig t imeArray [ i ] + 1e9∗ j ∗ h o r i z I n t e r v a l ) ;

}
}
double dx = timeArray [ 1 ] − timeArray [ 0 ] ; // I n t e g r a t i o n t imestep

i n t pointsPerWindow = ( i n t ) ( p . getWindow ()/ dx ) ;
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vector<double∗> Acqs ;

vector<double∗> Times ;

vector<bool> goodHits ;

vector<double> spectrumTime ;

vector<double> spectrumADCCounts ;

LeCroyData l cd = LeCroyData ( fi leName , vertUnit , hor izUnit ,

timestamp , commType , ve r t i ca lGa in , v e r t i c a l O f f s e t ,

hor i zUncerta inty , tr igt imeArray , hor i zOf f s e tArray , waveArray ,

timeArray , pointsPerAcq , subArrayCount , dx , pointsPerWindow ,

Acqs , Times , goodHits , spectrumTime , spectrumADCCounts ) ;

// Clean up

d e l e t e f i l e B u f f e r ;

r e turn l cd ;

}
vector<LeCroyData> Load ( i n t n , s t r i n g path , Parameters P) {

vector<LeCroyData> run ;

f o r ( i n t i =0; i<n ; i++) {
cout<<”Please input the f i l ename (”<< i+1<<”/”<<n<<”):”<<endl ;

s t r i n g f i l ename ;

g e t l i n e ( cin , f i l ename , ’\n ’ ) ;

LeCroyData l cd = r e a d F i l e ( path+”/”+f i l ename , P) ;

run . push back ( l cd ) ;

}
re turn run ;

}

Analysis.cpp

#inc lude ”LeCroy . h”

double ∗ getRawAcqWave( i n t segment , LeCroyData l cd ) {
// Getter method f o r an i n d i v i d u a l waveform a c q u i s i t i o n ,

indexed by the i n t segment

i n t n = lcd . getPointsPerAcq ( ) ;

double ∗ waveform = new double [ n ] ;

f o r ( i n t i = 0 ; i<n ; i++) { //For each po int in the a c q u i s i t i o n

// Fetch the po int from the s p e c i f i e d segment

waveform [ i ] = l cd . getWaveArray ( ) [ segment∗n + i ] ;

}
re turn waveform ;
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}
double ∗ getRawAcqTime ( i n t segment , LeCroyData l cd ) {

// Getter method f o r the t iming data f o r the i n d i v i d u a l waveform

a c q u i s i t i o n indexed by the i n t segment

i n t n = lcd . getPointsPerAcq ( ) ;

double ∗ segmentTimes = new double [ n ] ;

f o r ( i n t i = 0 ; i<n ; i++) { //For each po int in the a c q u i s i t i o n

// Fetch the po int from the s p e c i f i e d segment

segmentTimes [ i ] = l cd . getTimeArray ( ) [ segment∗n + i ]−
l cd . getTrigTimeArray ( ) [ segment ] ;

}
re turn segmentTimes ;

}
double meanEstimateBasel ine ( double ∗ data , double ∗ time , LeCroyData &lcd ,

Parameters p) {
// Uses the vo l tage recorded up to the t r i g g e r event to

es t imate the b a s e l i n e

// Labels va lue f o r d i s c a r d i n g i f the standard dev i a t i on o f vo l tage

r eg i on in both pre− and post− t r i g g e r i s h igher than s i gL im i t

i n t s t a r t P o i n t s = 0 ;

i n t n = lcd . getPointsPerAcq ( ) ;

bool check = f a l s e ; //Assume a c q u i s i t i o n i s bad

// I d e n t i f y the number o f po in t s be f o r e the t r i g g e r

whi l e ( time [ s t a r t P o i n t s +1] < 0) {
s t a r t P o i n t s++;

}
//To avoid the t r i g g e r i n g s i g n a l skewing the value o f the b a s e l i n e

s t a r t P o i n t s = ( s t a r t P o i n t s ∗8)/10 ;

double s ta r tReg ion [ s t a r t P o i n t s ] ;

// C o l l e c t the vo l tage va lue s be f o r e the t r i g g e r in an array

f o r ( i n t i = 0 ; i<s t a r t P o i n t s ; i++) {
s ta r tReg ion [ i ] = data [ i ] ;

}
//And eva luate the mean

double baseLine = TMath : : Mean<double>( s ta r tPo in t s , s ta r tReg ion ) ;

// I f f i r s t b a s e l i n e t e s t i s FAILED

i f (TMath : : StdDev<double>( s ta r tPo in t s , s ta r tReg ion ) > p . getMaxSigma ( )

) {
//Try the l a t t e r h a l f o f the a c q u i s i t i o n to es t imate ba s e l i n e ,

in case pu l s e i s in s tar tReg ion

double secondRegion [ s t a r t P o i n t s ] ;
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// C o l l e c t vo l t age va lue s from end o f a c q u i s i t i o n in to array

f o r ( i n t i = 0 ; i<s t a r t P o i n t s ; i++) {
secondRegion [ i ] = data [ n−i ] ;

}
// r e c a l c u l a t e mean f o r new reg i on

baseLine = TMath : : Mean<double>( s ta r tPo in t s , secondRegion ) ;

// I f second b a s e l i n e t e s t i s PASSED

i f (TMath : : StdDev<double>( s ta r tPo in t s , secondRegion ) <

p . getMaxSigma ( ) ) {
// search f o r a negat ive va lue o f pd , i n d i c a t i v e o f s i g n a l

f o r ( i n t i =0; i<n ; i++) {
i f ( data [ i ] < 0) {

// i f found , then l i k e l y that a s i n g l e

pu l s e i s pre sent

check = true ;

break ;

}
}

}
}
e l s e { // I f f i r s t b a s e l i n e t e s t i s PASSED

// search f o r a negat ive va lue o f pd , i n d i c a t i v e o f a s i g n a l

f o r ( i n t i =0; i<n ; i++) {
i f ( data [ i ] < 0) {
// i f found , then i t i s l i k e l y that a s i n g l e pu l s e

i s pre s ent

check = true ;

break ;

}
}

}
//add r e s u l t o f b a s e l i n e & s i g n a l t e s t i n g in to a vec to r o f checks

i f ( check ) {
l cd . appendGoodHits ( t rue ) ;

}
e l s e {

l cd . appendGoodHits ( f a l s e ) ;

}
re turn baseLine ;

}
void b a s e l i n e S u b t r a c t i o n ( LeCroyData &lcd , Parameters P) {
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l cd . getAcqs ( ) . c l e a r ( ) ; // c l e a r any prev ious b a s e l i n e sub t ra c t i on

l cd . getGoodHits ( ) . c l e a r ( ) ;

i n t n = lcd . getSubAcqCount ( ) ;

i n t p = lcd . getPointsPerAcq ( ) ; // changed from PointsPerWindow

f o r ( i n t i = 0 ; i<n ; i++) { //For each a c q u i s i t i o n

double ∗ data = getRawAcqWave( i , l cd ) ;

double ∗ time = getRawAcqTime ( i , l cd ) ;

// Ca l cu la te the b a s e l i n e f o r the a c q u i s i t o n

double b a s e l i n e = meanEstimateBasel ine ( data , time , lcd , P) ;

//Make a record o f the a c q u i s i t i o n s :

double ∗ acq = new double [ p ] ;

f o r ( i n t j = 0 ; j<p ; j++) {
// Store a copy o f the a c q u i s i t i o n a f t e r b a s e l i n e sub t ra c t i on

acq [ j ] = b a s e l i n e − data [ j ] ;

}
l cd . appendAcqs ( acq ) ;

l cd . appendTimes ( time ) ;

}
}
double compos i t e In teg ra t e ( double ∗ Acq , i n t pointsPerWindow , i n t pointsPerAcq ,

double dx ) {
// Locate pu l s e by f i n d i n g the h i ghe s t pd

i n t max = 0 ;

double minValue = −DBL MAX;

f o r ( i n t i =0; i<pointsPerAcq ; i++) {
i f (Acq [ i ] > minValue ) {

minValue = Acq [ i ] ;

max = i ;

}
}
// s t a r t i n t e g r a t i o n 20 ns be f o r e peak o f pu l s e

i n t windowStart = max − (20/ dx ) ;

//An n−po int composite Newton−Cotes formula

// Pretty good f o r nPoints > 8

double sum = 0 ;

f o r ( i n t i = 0 ; i<pointsPerWindow ; i++) {
i f ( i == 0 | | i == pointsPerWindow−1) {

sum += 17∗Acq [ windowStart+i ] / 4 8 . ;

}
e l s e i f ( i == 1 | | i == pointsPerWindow−2) {

sum += 59∗Acq [ windowStart+i ] / 4 8 . ;
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}
e l s e i f ( i == 2 | | i == pointsPerWindow−3) {

sum += 43∗Acq [ windowStart+i ] / 4 8 . ;

}
e l s e i f ( i == 3 | | i == pointsPerWindow−4) {

sum += 49∗Acq [ windowStart+i ] / 4 8 . ;

}
e l s e {

sum+=Acq [ windowStart+i ] ;

}
}
re turn sum∗dx ;

}
void buildSpectrum ( LeCroyData &lcd ) {

l cd . getSpectrumADCCounts ( ) . c l e a r ( ) ; // Clear any prev ious spec t ra

l cd . getSpectrumTime ( ) . c l e a r ( ) ;

i n t n = lcd . getSubAcqCount ( ) ;

double s tep = lcd . getDx ( ) ;

// Ca l cu la te a po int in the spectrum from every a c q u i s i t i o n

f o r ( i n t i = 0 ; i<n ; i++) {
double i n t e g r a l = compos i t e In teg ra t e ( l cd . getAcqs ( ) [ i ] ,

l cd . getPointsPerWindow ( ) , l cd . getPointsPerAcq ( ) , s t ep ) ;

l cd . appendSpectrumADCCounts ( i n t e g r a l ) ;

l cd . appendSpectrumTime ( l cd . getTrigTimeArray ( ) [ i ] ) ;

}
}
vector<LeCroyData> Analys i s ( i n t n , s t r i n g path , Parameters P) {

vector<LeCroyData> run = Load (n , path , P) ;

cout<<”Analysing t r a c e f i l e ( s ). . .”<< endl ;

i n t count = 0 ;

f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {
b a s e l i n e S u b t r a c t i o n ( run [ i ] , P ) ;

bui ldSpectrum ( run [ i ] ) ;

count += run [ i ] . getSubAcqCount ( ) ;

}
cout<<”The t ra c e f i l e ( s ) conta ined a t o t a l o f ”<<count<<”

a c q u i s i t i o n s .”<<endl ;

r e turn run ;

}
void Write ( vector<LeCroyData> run , s t r i n g name , s t r i n g des t ) {

dest = dest+”/”+name+”. txt ” ;
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cout<<dest<<endl ;

const char ∗ d e s t c = dest . c s t r ( ) ;

o f s tream f i l e ;

f i l e . open ( d e s t c ) ;

f i l e << ”Spectrum Time Spectrum ADC Counts

Label\n ” ;

f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {
f o r ( i n t j =0; j<run [ i ] . getSpectrumADCCounts ( ) . s i z e ( ) ; j++) {

s t r i n g time = boost : : l e x i c a l c a s t <s t r i ng >(

run [ i ] . getSpectrumTime ( ) [ j ] ) ;

s t r i n g count = boost : : l e x i c a l c a s t <s t r i ng >(

run [ i ] . getSpectrumADCCounts ( ) [ j ] ) ;

s t r i n g l a b e l ;

i f ( run [ i ] . getGoodHits ( ) [ j ] ) {
l a b e l = ”Good ” ;

}
e l s e {

l a b e l = ”Bad ” ;

}
s t r i n g entry = time+” ”+count+” ”+l a b e l +”\n ” ;

f i l e << entry ;

}
}
f i l e . c l o s e ( ) ;

}
vector<Hit> Match ( vector<double> l eCroyEnerg ies , vector<double> leCroyTime ,

vector<bool> goodHits , vector<Tracker> t r a c k e r ) {
cout<<”F i l t e r i n g t r a c ke r data ...”<< endl ;

// f i l t e r t r a c k e r data , tak ing only good h i t s

vector<Tracker> t r a c k e r f ;

f o r ( i n t i =0; i<t r a c ke r . s i z e ( ) ; i++) {
i f ( t r a c k e r [ i ] . getGoodHit ( ) ) {

t r a c k e r f . push back ( t r a c k e r [ i ] ) ;

}
}
cout<<”F i l t e r e d t r a c k e r data conta in s ”<< t r a c k e r f . s i z e ()<<”

events .”<<endl ;

cout<<”F i l t e r i n g leCroy data ...”<< endl ;

// f i l t e r leCroy data , tak ing only good a c q u i s i t i o n s

vector<double> e n e r g i e s f ;

vector<double> leCroyTime f ;
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f o r ( i n t i =0; i<l eCroyEnerg ie s . s i z e ( ) ; i++) {
i f ( goodHits [ i ] ) {

e n e r g i e s f . push back ( l eCroyEnerg ie s [ i ] ) ;

leCroyTime f . push back ( leCroyTime [ i ] ) ;

}
}
cout<<”F i l t e r e d leCroy data conta in s ”<<e n e r g i e s f . s i z e ()<<”

events .”<<endl ;

cout<<”Matching events ...”<< endl ;

vector<Hit> h i t s f ;

double agreement = 5 0 0 . 0 ; // i n i t i a l t o l e r a n c e f o r matching events ( ns )

f o r ( i n t i =0; i<leCroyTime f . s i z e ( ) ; i++) {
f o r ( i n t j =0; j<t r a c k e r f . s i z e ( ) ; j++) {

// c l o c k s g radua l l y s h i f t f u r t h e r out o f sync

i f ( abs ( leCroyTime f [ i ]− t r a c k e r f [ j ] . getTimestamp ( ) ) <

agreement + ( 3 . 4 2E−6∗ t r a c k e r f [ j ] . getTimestamp ( ) ) )

{
Hit h i t = Hit ( t r a c k e r f [ j ] . getTimestamp ( ) ,

t r a c k e r f [ j ] . getCoords ( ) [ 0 ] ,

t r a c k e r f [ j ] . getCoords ( ) [ 1 ] ,

e n e r g i e s f [ i ] ) ;

h i t s f . push back ( h i t ) ;

// cout<<”Match at ”<<leCroyTime f [ i ]<<”,”<<

t r a c k e r f [ j ] . getTimestamp()<<endl ;

break ;

}
}

}
cout<<”Matched ”<<h i t s f . s i z e ()<<” events from f i l t e r e d data.”<<endl ;

r e turn h i t s f ;

}
void writeMatch ( vector<Hit> run , s t r i n g name , s t r i n g des t ) {

dest = dest+”/”+name+”. txt ” ;

cout<<dest<<endl ;

const char ∗ d e s t c = dest . c s t r ( ) ;

o f s tream f i l e ;

f i l e . open ( d e s t c ) ;

f i l e << ”Time X Y Energy\n ” ;

f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {
s t r i n g time = boost : : l e x i c a l c a s t <s t r i ng >(

run [ i ] . getTimestamp ( ) ) ;
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s t r i n g x = boost : : l e x i c a l c a s t <s t r i ng >(run [ i ] . getX ( ) ) ;

s t r i n g y = boost : : l e x i c a l c a s t <s t r i ng >(run [ i ] . getY ( ) ) ;

s t r i n g energy = boost : : l e x i c a l c a s t <s t r i ng >(

run [ i ] . getEnergy ( ) ) ;

s t r i n g entry = time+” ”+x+” ”+y+” ”+energy+”\n ” ;

f i l e << entry ;

}
f i l e . c l o s e ( ) ;

}
void Histogram ( vector<LeCroyData> run , Parameters P, s t r i n g name , s t r i n g dest ,

TAppl icat ion ∗ app ) {
s t r i n g t i t l e = name+”;ADC Counts (mV ns ) ; Frequency ” ;

const char ∗ name c = name . c s t r ( ) ;

const char ∗ t i t l e c = t i t l e . c s t r ( ) ;

TH1D∗ h i s t = new TH1D(”ADC Counts ” , t i t l e c , P . getBins ( ) , P . getXlow ( ) ,

P . getXhigh ( ) ) ;

f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {
f o r ( i n t j =0; j<run [ i ] . getSpectrumADCCounts ( ) . s i z e ( ) ; j++) {

//Removing t h i s check w i l l p l o t bad a c q u s i t i o n s too

i f ( run [ i ] . getGoodHits ( ) [ j ] ) {
h i s t−>F i l l ( run [ i ] . getSpectrumADCCounts ( ) [ j ] ) ;

}
}

}
// f i n d the bin with the l a r g e s t number o f counts

i n t maxLeCroyBin = hi s t−>GetMaximumBin ( ) ;

// convert bin number in to ADC count

double conver s i on = ( double ) (P. getXhigh ()−P. getXlow ( ) ) /P. getBins ( ) ;

cout<<”The peak energy was : ”<<maxLeCroyBin∗ convers ion<<” mV ns”<<

endl ;

const char ∗ d e s t c ;

des t = dest+”/”+name+”. pdf ” ;

d e s t c = dest . c s t r ( ) ;

TCanvas∗ c1 = new TCanvas ( name c , name c , 1920 , 1080 ) ;

h i s t−>Draw ( ) ;

c1−>Update ( ) ;

c1−>Print ( d e s t c ) ;

app−>Run( h i s t ) ;

d e l e t e h i s t ;

d e l e t e c1 ;

}
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void timeHistogram ( vector<LeCroyData> run , Parameters P, s t r i n g name ,

s t r i n g dest , TAppl icat ion ∗ app ) {
s t r i n g t i t l e = name+”;Time I n t e r v a l ( ns ) ; Frequency ” ;

const char ∗ name c = name . c s t r ( ) ;

const char ∗ t i t l e c = t i t l e . c s t r ( ) ;

TH1D∗ h i s t = new TH1D(”Time I n t e r v a l Between Pulses ” , t i t l e c ,

P . getBins ( ) , P . getXlow ( ) , P . getXhigh ( ) ) ;

f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {
f o r ( i n t j =0; j<run [ i ] . getSpectrumTime ( ) . s i z e ( ) ; j++) {

h i s t−>F i l l ( run [ i ] . getSpectrumTime ( ) [ j +1]−run [ i ] .

getSpectrumTime ( ) [ j ] ) ;

}
}
const char ∗ d e s t c ;

des t = dest+”/”+name+”. pdf ” ;

d e s t c = dest . c s t r ( ) ;

TCanvas∗ c1 = new TCanvas ( name c , name c , 1920 , 1080 ) ;

h i s t−>Draw ( ) ;

c1−>Update ( ) ;

c1−>Print ( d e s t c ) ;

app−>Run( h i s t ) ;

d e l e t e h i s t ;

d e l e t e c1 ;

}
void plotRawWaveform ( LeCroyData lcd , i n t index , s t r i n g name , s t r i n g dest ,

TAppl icat ion ∗ app ) {
i n t p = lcd . getPointsPerAcq ( ) ;

double ∗ ADC = getRawAcqWave( index , l cd ) ;

double ∗ time = getRawAcqTime ( index , l cd ) ;

TGraph∗ graph = new TGraph(p , time , ADC) ;

graph−>GetXaxis()−>S e t T i t l e (”Time ( ns ) ” ) ;

graph−>GetYaxis()−>S e t T i t l e (” P o t e n t i a l D i f f e r e n c e (mV) ” ) ;

TCanvas∗ c1 = new TCanvas (”Waveform” , ”Waveform” , 1920 , 1080 ) ;

des t = dest+”/”+name+”. pdf ” ;

const char ∗ d e s t c = dest . c s t r ( ) ;

const char ∗ name c = name . c s t r ( ) ;

graph−>SetNameTitle ( name c , name c ) ;

graph−>Draw ( ) ;

c1−>Update ( ) ;

c1−>Print ( d e s t c ) ;

app−>Run( graph ) ;
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d e l e t e graph ;

d e l e t e c1 ;

}
void plotSubtractedWaveform ( LeCroyData lcd , i n t index , s t r i n g name ,

s t r i n g dest , TAppl icat ion ∗ app ) {
i n t p = lcd . getPointsPerAcq ( ) ;

double ∗ ADC = lcd . getAcqs ( ) [ index ] ;

double ∗ time = lcd . getTimes ( ) [ index ] ;

TGraph∗ graph = new TGraph(p , time , ADC) ;

graph−>GetXaxis()−>S e t T i t l e (”Time ( ns ) ” ) ;

graph−>GetYaxis()−>S e t T i t l e (” P o t e n t i a l D i f f e r e n c e (mV) ” ) ;

TCanvas∗ c1 = new TCanvas (”Waveform” , ”Waveform” , 1920 , 1080 ) ;

des t = dest+”/”+name+”. pdf ” ;

const char ∗ d e s t c = dest . c s t r ( ) ;

const char ∗ name c = name . c s t r ( ) ;

graph−>SetNameTitle ( name c , name c ) ;

graph−>Draw ( ) ;

c1−>Update ( ) ;

c1−>Print ( d e s t c ) ;

app−>Run( graph ) ;

d e l e t e graph ;

d e l e t e c1 ;

}
void plotBoth ( vector<LeCroyData> run , Caen caen , Parameters P, s t r i n g name ,

s t r i n g dest , TAppl icat ion ∗ app ) {
s t r i n g t i t l e = name+”;ADC Counts (mV ns ) ; Frequency ” ;

const char ∗ name c = name . c s t r ( ) ;

const char ∗ t i t l e c = t i t l e . c s t r ( ) ;

const char ∗ d e s t c ;

des t = dest+”/”+name+”. pdf ” ;

d e s t c = dest . c s t r ( ) ;

// load LeCroy data in to histogram

TH1D∗ leCroy = new TH1D(” LeCroy Scope ” , t i t l e c , P . getBins ( ) ,

P . getXlow ( ) , P . getXhigh ( ) ) ;

f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {
f o r ( i n t j =0; j<run [ i ] . getSpectrumADCCounts ( ) . s i z e ( ) ; j++) {

//Removing t h i s check w i l l p l o t bad a c q u s i t i o n s too

i f ( run [ i ] . getGoodHits ( ) [ j ] ) {
leCroy−>F i l l ( run [ i ] . getSpectrumADCCounts ( ) [ j ]

) ;

}
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}
}
// s c a l e Caen data to match LeCroy data

double maxCaenBin ;

double maxCaenFreq = DBL MIN;

f o r ( i n t i =0; i<caen . getBins ( ) . s i z e ( ) ; i++) {
i f ( caen . getCounts ( ) [ i ] > maxCaenFreq ) {

// f i n d the bin with the l a r g e s t number o f counts

maxCaenFreq = caen . getCounts ( ) [ i ] ;

maxCaenBin = i ;

}
}
// f i n d the bin with the l a r g e s t number o f counts

i n t maxLeCroyBin = leCroy−>GetMaximumBin ( ) ;

double maxLeCroyFreq = leCroy−>GetBinContent ( maxLeCroyBin ) ;

// convert bin number in to ADC count

double conver s i on = ( double ) (P. getXhigh ()−P. getXlow ( ) ) /P. getBins ( ) ;

// f i n d approximate x and y s c a l i n g f a c t o r s

double xChange = maxCaenBin/( maxLeCroyBin∗ conver s i on ) ;

double yChange = maxCaenFreq/maxLeCroyFreq ;

//Compare number o f events in peaks o f h istograms to f i n d

b e t t e r y−s c a l e

double caenPeakCounts = 0 . 0 ;

double leCroyPeakCounts = 0 . 0 ;

// the s c a l e between no . o f LeCroy b ins vs . Caen b ins

i n t f a c t o r = (P. getXhigh ()−P. getXlow ( ) ) /P. getBins ( ) ;

i f ( f a c t o r == conver s i on ) { // check i f whole number

i n t peakWidth = 320 ; // width o f peak in mVns

i n t halfRange = peakWidth /(2∗ f a c t o r ) ;

// count events +− 320 mVns o f peak

f o r ( i n t i=−halfRange ; i<halfRange +1; i++) {
leCroyPeakCounts += leCroy−>

GetBinContent ( maxLeCroyBin+i ) ;

// otherwi se f o r i=range−1, the caen data goes on f o r

3 mVns too many

i f ( i == halfRange ) {
caenPeakCounts += caen . getCounts ( )

[ maxCaenBin+( f a c t o r ∗ i ) ] ;

}
e l s e {

f o r ( i n t j =0; j<f a c t o r ; j++) {
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caenPeakCounts += caen . getCounts ( )

[ maxCaenBin+( f a c t o r ∗ i )+ j ] ;

}
}

}
}
//Do not know why we need to mult ip ly by f a c t o r to get a good r e s u l t

double yChangePeak = caenPeakCounts /( leCroyPeakCounts∗ f a c t o r ) ;

//Check f o r no i sy peaks by check ing i f y−s c a l e f a c t o r s are with in 20%

of each other

i f (TMath : : Abs ( yChangePeak−yChange )/ yChange > 0 . 2 ) {
cout<<”The approximate y−s c a l e f a c t o r was used : check p l o t

f o r no i sy peak.”<<endl ;

}
e l s e {

yChange = yChangePeak ;

cout<<”The peak event count ing y−s c a l e f a c t o r was used.”<<

endl ;

}
cout<<”Would you l i k e to f i n d the x−s c a l e by minimis ing the

Chi−Square ? ( Takes a few minutes ) (Y/N)”<<endl ;

s t r i n g o ;

g e t l i n e ( cin , o , ’\n ’ ) ;

i f ( o==”Y” | | o==”Yes” | | o==”y ”) {
// Test x and y s c a l e f a c t o r s with in +/− 1.5% in s t ep s o f 0.05%

double increment = 0 . 0 0 0 5 ;

i n t range = 30 ;

vector<double> xFactors ;

vector<double> yFactors ;

f o r ( i n t i =0; i<range ; i ++){
xFactors . push back ((1−((( range /2)− i )∗ increment ) )∗

xChange ) ;

yFactors . push back ((1−((( range /2)− i )∗ increment ) )∗
yChange ) ;

}
//For each fac to r , c r e a t e a s c a l e d histogram of Caen data &

eva luate chi−square

vector<double> xChiSquares ;

vector<TH1D∗> xHistograms ;

double bestXChiSquare = DBL MAX;

double newXChange ;
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// Create histograms f o r Caen data

f o r ( i n t i =0; i<xFactors . s i z e ( ) ; i++) {
s t r i n g xID = t o s t r i n g ( xFactors [ i ] ) ;

const char ∗ xID c = xID . c s t r ( ) ;

//Caen data in the same number o f b ins as leCroy

TH1D∗ xCaenHist = new TH1D( xID c , t i t l e c ,

P . getBins ( ) , P . getXlow ( ) , P . getXhigh ( ) ) ;

xHistograms . push back ( xCaenHist ) ;

}
// F i l l h i s tograms

cout<<”Test ing x s c a l e f a c t o r s ...”<< endl ;

cout<<”F i l l i n g Caen histograms ...”<< endl ;

f o r ( i n t k=0; k<caen . getBins ( ) . s i z e ( ) ; k++) {
f o r ( i n t j =0; j<caen . getCounts ( ) [ k ] ; j++) {

f o r ( i n t i =0; i<xFactors . s i z e ( ) ; i++) {
xHistograms [ i ]−>F i l l (

caen . getBins ( ) [ k ] / xFactors [ i ] ) ;

}
}

}
// Since we have rebinned Caen data in to fewer bins ,

f i n d new approximate y s c a l e f a c t o r

// Should not matter which histogram we use

i n t maxCaenBin2 = xHistograms [0]−>GetMaximumBin ( ) ;

double maxCaenFreq2 = xHistograms [0]−>GetBinContent (

maxCaenBin2 ) ;

double yChange2 = maxCaenFreq2/maxLeCroyFreq ;

// Suppress in fo rmat ion output from ROOT

gError IgnoreLeve l = kError ;

// Test x chi−square

f o r ( i n t i =0; i<xFactors . s i z e ( ) ; i++) {
xHistograms [ i ]−>Sca l e (1/ yChange2 ) ;

// Evaluate chi−square and keep track o f bes t va lue

double ch i square = xHistograms [ i ]−>Chi2Test (

leCroy , ”UU, CHI2/NDF” ) ;

i f ( ch i square < bestXChiSquare ) {
bestXChiSquare = ch i square ;

newXChange = xFactors [ i ] ;

}
cout<<”The Chi−Square between the LeCroy and Caen

histograms f o r an x−s c a l e f a c t o r ”<<
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xFactors [ i ]<<” i s : ”<<ch i square<<endl ;

xChiSquares . push back ( ch i square ) ;

d e l e t e xHistograms [ i ] ;

}
cout<<”The d i f f e r e n c e between the approximate x−s c a l e f a c t o r

and the Chi−Square x−s c a l e f a c t o r i s : ”<<

xChange−newXChange<<endl ;

xChange = newXChange ;

// Restore in fo rmat ion output from ROOT

gError IgnoreLeve l = kPrint ;

}
cout<<endl ;

cout<<”The peak ( LeCroy ) energy was : ”<<maxLeCroyBin∗ convers ion<<”

mV ns”<<endl ;

cout<<”The best x−s c a l e f a c t o r was found to be : ”<<xChange<<endl ;

cout<<”The best y−s c a l e f a c t o r was found to be : ”<<yChange<<endl ;

vector<double> x ; // s c a l e o r i g i n a l Caen data with best f a c t o r s

vector<double> y ;

f o r ( i n t i =0; i<caen . getBins ( ) . s i z e ( ) ; i++) {
x . push back ( caen . getBins ( ) [ i ] / xChange ) ;

y . push back ( caen . getCounts ( ) [ i ] / yChange ) ;

}
TGraph∗ graph = new TGraph( x . s i z e ( ) , x . data ( ) , y . data ( ) ) ;

TCanvas∗ c1 = new TCanvas ( name c , name c , 1920 , 1080 ) ;

graph−>GetXaxis()−>SetL imits (0 , P . getXhigh ( ) ) ;

graph−>GetXaxis()−>S e t T i t l e (”ADC Counts (mV ns ) ” ) ;

graph−>GetYaxis()−>S e t T i t l e (” Frequency ” ) ;

graph−>SetNameTitle ( name c , name c ) ;

graph−>Draw ( ) ;

leCroy−>Draw(” same ” ) ;

c1−>Update ( ) ;

c1−>Print ( d e s t c ) ;

app−>Run( leCroy ) ;

d e l e t e leCroy ;

d e l e t e c1 ;

}
void plot3D ( vector<Hit> h i t s , i n t bins , s t r i n g name , s t r i n g dest ,

TAppl icat ion ∗ app ) {
// cout<<”Would you l i k e to wr i t e average energy histogram data to

f i l e ? (Y/N)”<<endl ;

s t r i n g o = ”N” ;
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// g e t l i n e ( cin , o , ’\n ’ ) ;

s t r i n g t i t l e = name+”;x (mm) ; y (mm) ; Range (mm) ” ;

s t r i n g t i t l e 1 = name+”;x (mm) ; y (mm) ; Frequency ” ;

s t r i n g t i t l e 2 = name+”;x (mm) ; Energy (mV ns ) ; Frequency ” ;

s t r i n g t i t l e 3 = name+”;y (mm) ; Energy (mV ns ) ; Frequency ” ;

const char ∗ name c = name . c s t r ( ) ;

const char ∗ t i t l e c = t i t l e . c s t r ( ) ;

const char ∗ t i t l e 1 c = t i t l e 1 . c s t r ( ) ;

const char ∗ t i t l e 2 c = t i t l e 2 . c s t r ( ) ;

const char ∗ t i t l e 3 c = t i t l e 3 . c s t r ( ) ;

TH2D∗ h i s t = new TH2D(”3D Dose Depos i t ion ” , t i t l e c , bins , −20.0 ,

20 . 0 , bins , −20.0 , 2 0 . 0 ) ;

TH2D∗ h i s t 1 = new TH2D(”X−Y Dose Depos i t ion ( Fu l l )” , t i t l e 1 c , bins ,

−20.0 , 20 . 0 , bins , −20.0 , 2 0 . 0 ) ;

TH2D∗ h i s t 2 = new TH2D(”X−Y Dose Depos i t ion ( Str ipped )” , t i t l e 1 c ,

bins , −20.0 , 20 . 0 , bins , −20.0 , 2 0 . 0 ) ;

TH2D∗ h i s t 3 = new TH2D(”X−E Dose Depos i t ion ” , t i t l e 2 c , bins , −20.0 ,

20 . 0 , bins , 0 , 2 2 0 0 . 0 ) ;

TH2D∗ h i s t 4 = new TH2D(”Y−E Dose Depos i t ion ” , t i t l e 3 c , bins , −20.0 ,

20 . 0 , bins , 0 , 2 2 0 0 . 0 ) ;

TCanvas∗ c1 = new TCanvas ( name c , name c , 1080 , 1080 ) ;

f o r ( i n t i =0; i<h i t s . s i z e ( ) ; i++) {
// d e l i v e r g l o b a l bin number o f added entry

i n t b = hi s t1−>F i l l ( h i t s [ i ] . getX ( ) , h i t s [ i ] . getY ( ) ) ;

h i s t3−>F i l l ( h i t s [ i ] . getX ( ) , h i t s [ i ] . getEnergy ( ) ) ;

h i s t4−>F i l l ( h i t s [ i ] . getY ( ) , h i t s [ i ] . getEnergy ( ) ) ;

//add up e n e r g i e s o f a l l events in each bin

h i s t−>SetBinContent (b , h i s t−>GetBinContent (b)+ h i t s [ i ] .

getEnergy ( ) ) ;

}
// Ca lcu la te energy to range conver s i on

double alpha = 0 . 0 1 9 4 ; //power law o f form range = alpha ∗ energy ˆp

double p = 1 . 7 9 5 ; // va lue s found from Geant4 s imu la t i on

double peakEnergy = 1 8 1 6 . 0 ; // found from energy spectrum

double beamEnergy = 3 6 . 0 ; //beam energy in MeV

double conver s i on = beamEnergy/peakEnergy ;

// Transform 3D XY to XYRange histogram

i n t minCount = 20 ;

f o r ( i n t i =0; i<bins ; i++) { // i t e r a t e over a l l b ins

f o r ( i n t j =0; j<bins ; j++) {
// return g l o b a l bin number (+1 i g n o r e s underf low bin )
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i n t binNum = hi s t−>GetBin ( i +1, j +1);

// f i n d the number o f counts

double count = hi s t1−>GetBinContent (binNum ) ;

i f ( count > minCount ) {
h i s t−>SetBinContent (binNum ,

// d iv id e energy by counts to f i n d average ,

then convert to range

alpha ∗(TMath : : Power ( ( ( h i s t−>GetBinContent (

binNum)/ count )∗ conver s i on ) , p ) ) ) ;

h i s t2−>SetBinContent (binNum ,

h i s t1−>GetBinContent (binNum ) ) ;

}
e l s e {
// Set b ins with i n s u f f i c i e n t events to 0

h i s t−>SetBinContent (binNum , 0 ) ;

}
}

}
// Write data o f XYRange histogram to f i l e

i f ( o==”Y” | | o==”Yes” | | o==”y ”) {
const char ∗ d e s t c ;

des t = dest+”/”+name+”. txt ” ;

d e s t c = dest . c s t r ( ) ;

o f s tream f i l e ;

f i l e . open ( d e s t c ) ;

f i l e << ”X Y Range\n ” ;

f o r ( i n t i =0; i<bins ; i++) { // i t e r a t e over a l l b ins

f o r ( i n t j =0; j<bins ; j++) {
// return g l o b a l bin number (+1 i g n o r e s underf low bin )

i n t binNum = hi s t−>GetBin ( i +1, j +1);

s t r i n g x = boost : : l e x i c a l c a s t <s t r i ng >(

h i s t−>GetXaxis()−>GetBinLowEdge ( i +1)+

h i s t−>GetXaxis()−>GetBinWidth ( i +1)/2) ;

s t r i n g y = boost : : l e x i c a l c a s t <s t r i ng >(

h i s t−>GetYaxis()−>GetBinLowEdge ( j+1)+

h i s t−>GetYaxis()−>GetBinWidth ( j +1)/2) ;

s t r i n g energy = boost : : l e x i c a l c a s t <s t r i ng >(

h i s t−>GetBinContent (binNum ) ) ;

s t r i n g entry = x+” ”+y+” ”+energy+”\n ” ;

f i l e << entry ;

}
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}
f i l e . c l o s e ( ) ;

}
//Draw 4D XYRange Histogram

hi s t−>SetSta t s (kFALSE ) ; // Hide l egends

h i s t2−>SetSta t s (kFALSE ) ;

// s tops a x i s l a b e l s over lapp ing with s c a l e

h i s t−>GetXaxis()−>S e t T i t l e O f f s e t ( 1 . 5 ) ;

h i s t−>GetYaxis()−>S e t T i t l e O f f s e t ( 1 . 7 ) ;

h i s t−>GetZaxis()−>S e t T i t l e O f f s e t ( 1 . 2 ) ;

h i s t−>SetContour ( 9 9 ) ;

//Make s u r f a c e p l o t i n v i s i b l e in 3D space

h i s t2−>SetLineColorAlpha ( 2 2 , 0 . ) ;

h i s t2−>SetContour ( 6 0 ) ;

//Change 0 l e v e l to white in s t ead o f blue

h i s t2−>SetContourLevel (0 , 0 . 1 ) ;

h i s t−>Draw(”LEGO2Z0” ) ; //run40 2mmEPCol 40pA 4mmPMMA . t r c

c1−>Update ( ) ;

app−>Run( h i s t ) ;

//Draw 2D histogram onto a new pad and then over l ay : semi−hacky way

to make i t work

// Before Using Fi l e−>Quit ROOT to add the 2D histogram , make sure you

have completed any adjustments to 3D histogram , otherwi se co l our

w i l l change !

TPad∗ pad2 = new TPad(” pad2 ” , ” ” , 0 , 0 , 1 , 1 ) ;

i n t c i = 1181 ;

TColor∗ c o l o r = new TColor ( c i , 0 . 52 , 0 . 76 , 0 . 64 , ” ” , 0 ) ;

pad2−>S e t F i l l C o l o r ( c i ) ;

pad2−>S e t F i l l S t y l e ( 4 0 0 0 ) ;

pad2−>SetBorderMode ( 0 ) ;

pad2−>SetBorderS ize ( 2 ) ;

pad2−>SetFrameFi l lColor ( 0 ) ;

pad2−>SetFrameBorderMode ( 0 ) ;

pad2−>Draw ( ) ;

pad2−>cd ( ) ;

gStyle−>Se tPa l e t t e (kRainBow ) ;

h i s t2−>Draw(”SURF3 FB BB A” ) ;

c1−>Update ( ) ;

app−>Run( h i s t ) ;

d e l e t e c o l o r ;

d e l e t e pad2 ;
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//Draw Str ipped 2D XY Histogram

hi s t2−>GetXaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t2−>GetYaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t2−>GetZaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t2−>SetContour ( 6 0 ) ;

h i s t2−>Draw(”CONT0, COLZ” ) ;

c1−>Update ( ) ;

app−>Run( h i s t 2 ) ;

//Draw Ful l 2D XY Histogram

gStyle−>Se tPa l e t t e ( kBird ) ;

h i s t1−>GetXaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t1−>GetYaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t1−>GetZaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t1−>SetContour ( 6 0 ) ;

h i s t1−>Draw(”CONT0, COLZ” ) ;

c1−>Update ( ) ;

app−>Run( h i s t 1 ) ;

//Draw Ful l 3D XY Histogram

hi s t1−>SetContour ( 9 9 ) ;

h i s t1−>Draw(”LEGO2Z 0 ” ) ;

c1−>Update ( ) ;

app−>Run( h i s t 1 ) ;

//Draw 3D XE Histogram

hi s t3−>GetXaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t3−>GetYaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t3−>GetZaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t3−>SetContour ( 9 9 ) ;

h i s t3−>Draw(”LEGO2Z 0 ” ) ;

c1−>Update ( ) ;

app−>Run( h i s t 3 ) ;

//Draw 3D YE Histogram

hi s t4−>GetXaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t4−>GetYaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t4−>GetZaxis()−>S e t T i t l e O f f s e t ( 1 . 4 ) ;

h i s t4−>SetContour ( 9 9 ) ;

h i s t4−>Draw(”LEGO2Z 0 ” ) ;

c1−>Update ( ) ;

app−>Run( h i s t 4 ) ;

d e l e t e h i s t ;

d e l e t e h i s t 1 ;

d e l e t e h i s t 2 ;

80



d e l e t e h i s t 3 ;

d e l e t e h i s t 4 ;

d e l e t e c1 ;

}

Main.cpp

#inc lude ”LeCroy . h”

#inc lude ”Caen . h”

#inc lude ” Tracker . h”

i n t input Int ( ) {
i n t n ;

c in>>n ;

c in . i gno re ( ) ;

r e turn n ;

}
double inputDouble ( ) {

double d ;

c in>>d ;

c in . i gno re ( ) ;

r e turn d ;

}
s t r i n g inputSt r ing ( ) {

s t r i n g s ;

g e t l i n e ( cin , s , ’\n ’ ) ;

r e turn s ;

}
void subMenu( TAppl icat ion ∗ app , Parameters P) {

cout<<”What would you l i k e to do?”<<endl ;

cout<<endl ;

cout<<”−> Enter 0 to re turn to prev ious menu.”<<endl ;

cout<<”−> Enter 1 to s e t maximum b a s e l i n e sigma . ( Current va lue : ”

<<P. getMaxSigma()<<”)”<<endl ;

cout<<”−> Enter 2 to s e t i n t e g r a t i o n window . ( Current va lue : ”

<<P. getWindow()<<” ns)”<<endl ;

cout<<”−> Enter 3 to s e t number o f histogram bins . ( Current value : ”

<<P. getBins ()<<”)”<<endl ;

cout<<”−> Enter 4 to s e t histogram x−a x i s l i m i t s . ( Current va lue s : ”

<<P. getXlow()<<”, ”<<P. getXhigh()<<”)”<<endl ;

i n t subOption = input Int ( ) ;

i f ( subOption == 1) {
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cout<<”Set the maximum b a s e l i n e sigma : ( Current va lue : ”<<

P. getMaxSigma()<<”)”<<endl ;

cout<<”Or ente r 0 to re turn .”<<endl ;

double s = inputDouble ( ) ;

i f ( s !=0) {
P. setMaxSigma ( s ) ;

}
subMenu( app , P) ;

}
e l s e i f ( subOption == 2) {

cout<<”Set the i n t e g r a t i o n window ( ns ) : ( Current va lue : ”<<

P. getWindow()<<” ns)”<<endl ;

cout<<”Or ente r 0 to re turn .”<<endl ;

double w = inputDouble ( ) ;

i f (w!=0) {
P. setWindow (w) ;

}
subMenu( app , P) ;

}
e l s e i f ( subOption == 3) {

cout<<”Set the number o f histogram bins : ( Current va lue : ”<<

P. getBins ()<<”)”<<endl ;

cout<<”Or ente r 0 to re turn .”<<endl ;

i n t b = input Int ( ) ;

i f (b !=0) {
P. se tB ins (b ) ;

}
subMenu( app , P) ;

}
e l s e i f ( subOption == 4) {

cout<<”Set the X−a x i s l i m i t s : ( Current va lue s : ”<<P. getXlow ( )

<<”, ”<<P. getXhigh()<<”)”<<endl ;

cout<<”Or ente r 0 to re turn .”<<endl ;

cout<<”Set the upper x l i m i t : ”<<endl ;

i n t upper = input Int ( ) ;

i f ( upper != 0) {
cout<<”Set the lower x l i m i t : ”<<endl ;

i n t lower = input Int ( ) ;

P . setXlow ( lower ) ;

P . setXhigh ( upper ) ;

}
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subMenu( app , P) ;

}
e l s e {

program ( app , P) ;

}
}
void program ( TAppl icat ion ∗ app , Parameters P) {

cout<<”What would you l i k e to do?”<<endl ;

cout<<endl ;

cout<<”−> Enter 0 to e x i t .”<<endl ;

cout<<”−> Enter 1 to p l o t waveforms.”<<endl ;

cout<<”−> Enter 2 to histogram pu l s e time i n t e r v a l s .”<<endl ;

cout<<”−> Enter 3 to histogram ADC spec t ra .”<<endl ;

cout<<”−> Enter 4 to s e t LeCroy b a s e l i n e subtrac t ion , i n t e g r a t i o n

or histogram parameters .”<<endl ;

cout<<”−> Enter 5 to p l o t Caen d i g i t i s e r data.”<<endl ;

cout<<”−> Enter 6 to p l o t Caen d i g i t i s e r data with LeCroy data . ”

<<endl ;

cout<<”−> Enter 7 to p l o t PRaVDA t r a c k e r data.”<<endl ;

cout<<”−> Enter 8 to match LeCroy and PRaVDA t r a c k e r data.”<<endl ;

i n t opt ion = input Int ( ) ;

i f ( opt ion == 1) {
cout<<”−> Enter 0 to re turn to prev ious menu.”<<endl ;

cout<<”−> Enter 1 to p l o t raw waveforms.”<<endl ;

cout<<”−> Enter 2 to p l o t subtracted waveforms.”<<endl ;

i n t opt ion2 = input Int ( ) ;

i f ( opt ion2 == 0) {
program ( app , P) ;

}
i f ( opt ion2 == 1 | | opt ion2 == 2) {

cout<<”Please s p e c i f y the f u l l path o f the . t r c f i l e : ”

<<endl ;

s t r i n g path = inputSt r ing ( ) ;

cout<<”Enter the index o f the pu l s e you would l i k e to

p l o t :”<<endl ;

i n t index = input Int ( ) ;

cout<<”Spec i f y the d i r e c t o r y you wish to save the p l o t

to :”<<endl ;

s t r i n g dest = inputSt r ing ( ) ;

cout<<”Please g ive the p l o t a name : ”<<endl ;

s t r i n g name = inputSt r ing ( ) ;
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cout<<”Working ...”<< endl ;

LeCroyData l cd = r e a d F i l e ( path , P) ;

i f ( opt ion2 == 1) {
plotRawWaveform ( lcd , index , name , dest , app ) ;

}
i f ( opt ion2 == 2) {

b a s e l i n e S u b t r a c t i o n ( lcd , P) ;

plotSubtractedWaveform ( lcd , index , name , dest ,

app ) ;

}
cout<<”Ana lys i s complete .”<<endl ;

cout<<”Would you l i k e to do something e l s e ? (Y/N)”

<<endl ;

s t r i n g o = inputSt r ing ( ) ;

i f ( o==”Y” | | o==”Yes” | | o==”y ”) {
l cd . ˜ LeCroyData ( ) ;

program ( app , P) ;

}
e l s e {

cout<<”Goodbye.”<<endl ;

e x i t ( 0 ) ;

}
}
e l s e {

cout<<”Goodbye.”<<endl ;

e x i t ( 0 ) ;

}
}
e l s e i f ( opt ion == 2 | | opt ion == 3) {

cout<<”How many . t r c f i l e s would you l i k e to ana lyse ?

( Enter 0 to re turn to prev ious menu)”<<endl ;

i n t n = input Int ( ) ;

i f (n==0) {
program ( app , P) ;

}
e l s e {

cout<<”Please s p e c i f y the d i r e c t o r y conta in ing your

. t r c f i l e s :”<<endl ;

s t r i n g path = inputSt r ing ( ) ;

vector<LeCroyData> run = Analys i s (n , path , P) ;

cout<<”Spec i f y the d i r e c t o r y you wish to save the
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histogram to:”<<endl ;

s t r i n g dest = inputSt r ing ( ) ;

cout<<”Please g ive the histogram a name : ”<<endl ;

s t r i n g name = inputSt r ing ( ) ;

cout<<”Save LeCroy data to d i sk ? (Y/N)”<<endl ;

s t r i n g g = inputSt r ing ( ) ;

i f ( g==”Y” | | g==”Yes” | | g==”y ”) {
cout<<”Writing f i l e to d i sk ...”<< endl ;

Write ( run , name , des t ) ;

cout<<”Write complete .”<<endl ;

}
cout<<”Ana lys i s complete .”<<endl ;

i f ( opt ion == 2) {
timeHistogram ( run , P, name , dest , app ) ;

}
i f ( opt ion == 3) {

Histogram ( run , P, name , dest , app ) ;

}
cout<<”Would you l i k e to do something e l s e ? (Y/N)”

<<endl ;

s t r i n g o = inputSt r ing ( ) ;

i f ( o==”Y” | | o==”Yes” | | o==”y ”) {
f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {

run [ i ] . ˜ LeCroyData ( ) ;

}
program ( app , P) ;

}
e l s e {

cout<<”Goodbye.”<<endl ;

e x i t ( 0 ) ;

}
}

}
e l s e i f ( opt ion == 4) {

subMenu( app , P) ;

}
e l s e i f ( opt ion == 5) {

cout<<”Please s p e c i f y the path o f the d i g i t i s e r data f i l e : ”

<<endl ;

s t r i n g path = inputSt r ing ( ) ;

Caen run = readCaen ( path ) ;
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cout<<”Spec i f y the upper l i m i t o f the x−a x i s .”<<endl ;

i n t xhigh = input Int ( ) ;

cout<<”Spec i f y the d i r e c t o r y you wish to save the p l o t to : ”

<<endl ;

s t r i n g dest = inputSt r ing ( ) ;

cout<<”Please g ive the p l o t a name : ”<<endl ;

s t r i n g name = inputSt r ing ( ) ;

cout<<”Working ...”<< endl ;

// change to plotCaen f o r s imple graphs

plotCaenHist ( run , name , dest , xhigh , app ) ;

cout<<”Ana lys i s complete .”<<endl ;

cout<<”Would you l i k e to do something e l s e ? (Y/N)”

<<endl ;

s t r i n g o = inputSt r ing ( ) ;

i f ( o==”Y” | | o==”Yes” | | o==”y ”) {
run . ˜ Caen ( ) ;

program ( app , P) ;

}
e l s e {

cout<<”Goodbye.”<<endl ;

e x i t ( 0 ) ;

}
}
e l s e i f ( opt ion == 6) {

cout<<”Please s p e c i f y the path o f the d i g i t i s e r data f i l e : ”

<<endl ;

s t r i n g caenPath = inputSt r ing ( ) ;

cout<<”Working ...”<< endl ;

Caen caen = readCaen ( caenPath ) ;

cout<<”How many . t r c f i l e s would you l i k e to ana lyse ?

( Enter 0 to re turn to prev ious menu)”<<endl ;

i n t n = input Int ( ) ;

i f (n==0) {
program ( app , P) ;

}
e l s e {

cout<<”Please s p e c i f y the d i r e c t o r y conta in ing your

. t r c f i l e s :”<<endl ;

s t r i n g lecroyPath = inputSt r ing ( ) ;

vector<LeCroyData> run = Analys i s (n , lecroyPath , P) ;

cout<<”Spec i f y the d i r e c t o r y you wish to save the
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histogram to:”<<endl ;

s t r i n g dest = inputSt r ing ( ) ;

cout<<”Please g ive the histogram a name : ”<<endl ;

s t r i n g name = inputSt r ing ( ) ;

cout<<”Save LeCroy data to d i sk ? (Y/N)”<<endl ;

s t r i n g g = inputSt r ing ( ) ;

i f ( g==”Y” | | g==”Yes” | | g==”y ”) {
cout<<”Writing f i l e to d i sk ...”<< endl ;

Write ( run , name , des t ) ;

cout<<”Write complete .”<<endl ;

}
cout<<”Working ...”<< endl ;

plotBoth ( run , caen , P, name , dest , app ) ;

cout<<”Ana lys i s complete .”<<endl ;

cout<<”Would you l i k e to do something e l s e ? (Y/N)”

<<endl ;

s t r i n g o = inputSt r ing ( ) ;

i f ( o==”Y” | | o==”Yes” | | o==”y ”) {
f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {

run [ i ] . ˜ LeCroyData ( ) ;

}
caen . ˜ Caen ( ) ;

program ( app , P) ;

}
e l s e {

cout<<”Goodbye.”<<endl ;

e x i t ( 0 ) ;

}
}

}
e l s e i f ( opt ion == 7) {

cout<<”Please s p e c i f y the path o f the PRaVDA . txt f i l e : ”

<<endl ;

s t r i n g path = inputSt r ing ( ) ;

cout<<”Spec i f y the d i r e c t o r y you wish to save the histogram

to:”<<endl ;

s t r i n g dest = inputSt r ing ( ) ;

cout<<”Please g ive the p l o t a name : ”<<endl ;

s t r i n g name = inputSt r ing ( ) ;

cout<<”Please s p e c i f y the number o f b ins : ”<<endl ;

i n t b ins = input Int ( ) ;
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cout<<”Working ...”<< endl ;

vector<Tracker> run = readTracker ( path ) ;

h i s tTracke r ( run , bins , name , dest , app ) ;

cout<<”Ana lys i s complete .”<<endl ;

cout<<”Would you l i k e to do something e l s e ? (Y/N)”<<endl ;

s t r i n g o = inputSt r ing ( ) ;

i f ( o==”Y” | | o==”Yes” | | o==”y ”) {
f o r ( i n t i =0; i<run . s i z e ( ) ; i++) {

run [ i ] . ˜ Tracker ( ) ;

}
program ( app , P) ;

}
e l s e {

cout<<”Goodbye.”<<endl ;

e x i t ( 0 ) ;

}
}
e l s e i f ( opt ion == 8) {

cout<<”Please s p e c i f y the path o f the PRaVDA . txt f i l e : ”

<<endl ;

s t r i n g trackerPath = inputSt r ing ( ) ;

cout<<”Working ...”<< endl ;

vector<Tracker> t r a c k e r = readTracker ( trackerPath ) ;

cout<<”Please s p e c i f y the d i r e c t o r y conta in ing your . t r c

f i l e :”<<endl ;

s t r i n g lecroyPath = inputSt r ing ( ) ;

vector<LeCroyData> leCroy = Analys i s (1 , lecroyPath , P) ;

vector<Hit> h i t s = Match ( leCroy [ 0 ] . getSpectrumADCCounts ( ) ,

leCroy [ 0 ] . getSpectrumTime ( ) , leCroy [ 0 ] . getGoodHits ( ) ,

t r a c ke r ) ;

cout<<”Please g ive the f i l e a name : ”<<endl ;

s t r i n g name = inputSt r ing ( ) ;

cout<<”Writing f i l e to d i sk ...”<< endl ;

writeMatch ( h i t s , name , lecroyPath ) ;

cout<<”View 3D p l o t s ? (Y/N)”<<endl ;

s t r i n g k = inputSt r ing ( ) ;

i f ( k==”Y” | | k==”Yes” | | k==”y ”) {
cout<<”Please s p e c i f y the number o f b ins : ”<<endl ;

i n t b ins = input Int ( ) ;

cout<<”Working ...”<< endl ;

plot3D ( h i t s , bins , name , lecroyPath , app ) ;

88



}
cout<<”Ana lys i s complete .”<<endl ;

cout<<”Would you l i k e to do something e l s e ? (Y/N)”<<endl ;

s t r i n g o = inputSt r ing ( ) ;

i f ( o==”Y” | | o==”Yes” | | o==”y ”) {
f o r ( i n t i =0; i<t r a c ke r . s i z e ( ) ; i++) {

t r a c k e r [ i ] . ˜ Tracker ( ) ;

}
leCroy [ 0 ] . ˜ LeCroyData ( ) ;

program ( app , P) ;

}
e l s e {

cout<<”Goodbye.”<<endl ;

e x i t ( 0 ) ;

}
}
e l s e {

cout<<”Goodbye.”<<endl ;

e x i t ( 0 ) ;

}
}
void s t a r t ( ) {

cout<<endl ;

cout<<”<UCL PBT Data Analyser>”<<endl ;

cout<<endl ;

cout<<”Exit ROOT windows us ing Fi l e−>Quit ROOT to a l low program to

cont inue .”<<endl ;

cout<<endl ;

TAppl icat ion ∗ app = new TApplicat ion (”App” , 0 , 0 ) ;

Parameters P = Parameters ( 5 . 0 , 150 .0 , 550 , 0 , 2200 ) ;

program ( app , P) ;

}
i n t main ( i n t argc , char ∗∗ argv ) {

s t a r t ( ) ;

}
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