

MPHY0032 – Ionising Radiation Physics

Review of last lecture

- Key photon interaction mechanisms ۲
 - Absorption
 - Photoelectric effect; $\tau \propto \frac{Z^4}{r^3}$
 - Dominates at low photon energies, especially high atomic number materials
 - Pair production; $\kappa \propto Z^2 \cdot E$
 - when hv >1.02 MeV
 - Dominates at very high photon energies, especially high atomic number materials

Scatter

- $\phi \propto \frac{Z^2}{F}$ • Thompson, Raleigh;
 - Most significant at low energies
- Compton;
- $\sigma \propto \frac{1}{r}$ Dominates at medium photon energies, especially low atomic number materials

Review of last lecture

- Compton shift equation
 - Shift varies with scatter angle
 - Photon energy but also wavelength

•
$$E_f = \frac{E_i}{1 + \frac{E_i}{m_e c^2}(1 - \cos \theta)}$$

 Combined interactions vary with photon energy

Image quality in photon imaging

Low transmission (high skin dose)	Acceptable signal and contrast	High signal
Good contrast (photoelectric effect $\mu \propto z^4$)	Compton effect X-ray imaging CT - imaging	Reduced image quality High doses
Mammography		
30kev 80l	(ev 120)	kev 1Mev

Photon interactions tougher example

2. Charged Particle Interactions

Charged particle interactions

• Source of charged particles for medical physics?

- CPs behave differently from photons
 - Mass/charge
- Therefore need new equations to describe how they transmit in tissue

Comparing Photon and CP interactions

- Infinite penetration in theory (% loss / unit length)
- Charged particles (electrons, protons, alpha)
 - many interactions per unit length
 - characteristic length ~10⁻⁵ 10⁻³ m
 - small energy loss per interaction
 - can calculate a fairly accurate penetration for given particle energy

Charged Particle Interactions

Charged particle interactions

- Elastic scatter
 - No loss of energy
 - Above a few hundred keV, sharply peaked in forward direction
- Inelastic scatter from nucleus/atomic electron
 - Photon emitted
 - Bremsstrahlung
- Inelastic scatter causing excitation
 - Atomic electron excited
 - Delayed photon emitted
- Ionisation
 - 2 electrons exit the interaction
 - More energetic called the "primary"

Collisional energy loss

Radiative energy loss

Experimental measurements of CP interactions

<u>Stopping power</u> - $\frac{dE}{dx}$

- Used to define energy loss of charged particles along path
- Equal to the average energy loss per unit length travelled in medium
- Made up of collisional and radiative parts

Linear stopping power,
$$S = \frac{dE}{dx} = \left(\frac{dE}{dx}\right)_{col} + \left(\frac{dE}{dx}\right)_{rad}$$

mass stopping power =
$$\frac{linear \ stopping \ power}{density}$$

<u>Charged particle range</u> - r_0

 Used to define how far a charged particle of a given energy will travel in a medium before being stopped (E=0)

$$r_0 = \int_0^{E_0} \frac{1}{\frac{dE}{dx}} dE$$

- Two approximations:
 - CSDA Continuous slowing down approximation
 - Straight ahead approximation

Simplifies to
$$r_0 = \frac{E_0}{dE/dx}$$

CSDA approximation

- All energy lost at continuous rate along particle track given by stopping power
 - All energy loss fluctuations neglected
- Only refers to interactions that result in energy loss
 - Ignores elastic scatter and thermal diffusion
 - Therefore, r₀ always smaller than mean value of path lengths actually travelled

Straight ahead approximation

- Any changes in direction ignored
 - Track is assumed rectilinear
- Good approx. for heavy particles
 - Protons and alpha
- Departure from linearity described by detour factor, d

$$d = \frac{z_{av}}{r_0}$$
 z_{av} = mean penetration depth
 r_0 = CSDA range

Explained on next slide

If using CSDA, assume all interactions have energy loss (average pathlength will be greater than r_o)

<u>Detour factor</u> - d

 Found experimentally by visual inspection of cloud chamber tracks All values in cm x 10⁻⁵

WATER	protons		alpha	
Energy (keV)	Csda range	Penetration depth	Csda range	Penetration depth
5	2.2	1.4	1.8	1.1
55	10.6	9.0	9.8	8.0
100	16.0	14.2	14.0	12.0

- Always less than 1
- Depends on
 - Energy
 - Z of medium

Detour factor, d, versus proton energy (MeV) in various materials.

carbon :

aluminium : A copper :

X tungsten.

Measurement of CP range

- Two methods:
 - Measure fraction transmitted through increasing thicknesses of medium
 - All particles must be collected so geometry important
 - Energy dependence of detector may affect result
 - 2. Measure depth dose in a medium
 - Routine in radiotherapy dept for electron beams
 - Different result to Method 1 (above)

sensitive volume of detector

<u>Method 1 – Transmission measurements</u>

<u>Range straggling</u> - α

 An explanation for why the range measurements have a "tail" rather than a sharp drop-off

- Fluctuation in path length for particles of same initial energy
 - Value varies with energy/medium
 - See proton lectures with Amos for more detail

Method 2 – Depth dose measurement

- Routinely used in radiotherapy
- Includes effects of "build-up"
 - Learn more in dosimetry lectures
 - At large depths there is bremsstrahlung from electrons

Depth dose curve

• Dose measured and plotted as function of depth

High energy electrons

Theoretical treatment of CP interactions

$$\sigma_{rad} = \frac{dT}{T + m_0 c^2} \frac{1}{Ndx} = \frac{1}{137} r_0^2 Z^2 \int_0^1 B.d\left(\frac{hv}{T}\right) = \frac{r_0^2 Z^2 B}{137}$$

$$\frac{1}{\rho} \left(\frac{dT}{dx}\right) = \frac{4\pi r_0^2 m_0 c^2}{\beta^2} \frac{1}{u} \frac{Z}{A} z^2 \left[\ln\left(\frac{2m_0 c^2 \beta^2 \gamma^2}{I}\right) - \beta\right]$$

You won't have to learn these!

UCL

Coulomb's law

• Describes the force experienced by two electrically charged particles

$$F = k_e \frac{q_1 q_2}{r^2}$$

$$k_e = 8.99 \times 10^9 \ Nm^2 C^{-2}$$

 Potentially large forces reduced by the inverse square law

Charles-Augustin de Coulomb

Published 1785

Types of interaction

- Incoming charged particles can interact with:
 - Individual electrons
 - Most frequent
 - Inelastic if energy is transferred (excite or ionise)
 - Elastic if sub-excitation collision
 - <u>Nucleus</u>

Why?

- Nuclear reactions possible (requires heavy charged particle)
- Nuclear or Coulomb scattering
- If incoming particle is electron Bremsstrahlung inelastic scatter
- <u>Coulomb field of whole atom</u>
 - Applies to heavy particles at low velocity

Which type?

- Depends on distance of approach
 - b>>a soft collision
 - Coulomb force disrupts atomic structure excitation/ionisation

trajectory

b

r_{min}

- Small energy transfer
- b~a hard collision
 - Individual electron ejected delta ray
- b<<a nuclear interaction
 - Most relevant for incoming electrons
- Depends on velocity of particle and duration of collision

<u>Heavy CP interactions – classical – part a)</u>

- Consider a heavy charged particle (not electron) interacting with a single electron
 - Assume M>>m₀
 - Force experienced by particle:

$$F = k \frac{ze^2}{r^2}$$

x-component will cancel during collision, thus only net force imparting momentum will be F_v

Change in momentum -

 $\Delta p = \int_{-\infty}^{\infty} F_{y} dt = \int_{-\infty}^{\infty} zke^{2} \frac{\cos\theta}{r^{2}} dt$ $\Delta p = \frac{zke^{2}}{bv} \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \cos\theta d\theta = \frac{2zke^{2}}{vb} = \frac{2zr_{0}m_{0}c^{2}}{vb}$

<u>Heavy CP interactions – classical – part b)</u>

• Energy lost by particle M for a given value of b: $(Am)^2$

$$\Delta E(b) = \frac{(\Delta p)^2}{2m_0}$$

- In a real material all values of b will exist
- Energy loss given by:

$$\beta = \frac{v}{c}$$

$$\frac{dE}{dx} = 4\pi N_e \rho \frac{z^2 r_0^2 m_0 c^2}{\beta^2} \left[\ln \left(\frac{b_{max}}{b_{min}} \right) \right]$$
Important factors
$$\frac{dE}{dx} \propto \frac{z^2}{v^2}$$
Log factor, so requires a large change to make

much difference

Bragg curve

• Why do protons have such potential for treatment?

• Particle energy changes dramatically as velocity is reduced

Heavy CP interactions – QM – part a)

<u>The Bethe formula</u>

- Assumes
 - E transferred is small compared to particle E
 - zZ << β</p>
- Orbital velocity of atomic electrons << v
- Both soft and hard collisions are important
- Introduces
 - Mean excitation energy, I
 - E_c (cut-off energy) between hard and soft collisions

$$\frac{1}{\rho} \left(\frac{dT}{dx}\right) = \frac{4\pi r_0^2 m_0 c^2}{\beta^2} \frac{1}{u} \frac{Z}{A} z^2 \left[\ln\left(\frac{2m_0 c^2 \beta^2 \gamma^2}{I}\right) - \beta \right]$$

u = atomic mass unit

Hans Bethe

Published 1932

 $[\]gamma$ = Lorentz factor

<u>Heavy CP interactions – QM – part b)</u>

- Mean excitation energy, I
 - In (I) dependence thus slow to change
 - Weighted average of all possible energy transfers from excitation and ionisation
 - Depends on Z
 - Note cyclic nature
 I/Z vs Z

<u>Heavy CP interactions – QM – part c)</u>

Restricted stopping power

- Limits the stopping power value to energy changes with a certain "Cut-off energy", E_c
- Interactions with large energy transfers are eliminated

• Useful for assessing dosimetry close to particle track

UC

<u>Heavy CP interactions – QM – part d)</u>

Bethe-Bloch equation

- Includes extra correction factors:
 - Shell term
 - Corrects for shells whose orbital electron velocity > particle velocity
 - Barkas term
 - Accounts for the sign of incoming charged particle
 - Bloch term
 - Accounts for departures from Born approximation

<u>Light CP interactions – QM – part a)</u>

- Mass of incoming particle = mass of struck electron
 - Includes electrons and positrons
 - Requires additional relativistic terms
- Interaction ejects atomic electron
 - Stopping power applies to the faster of the two emerging particles
 - Max energy transfer
 - 50% of original electron energy

$$\frac{1}{\rho} \left(\frac{dT}{dx} \right) = \frac{2\pi r_0^2 m_0 c^2}{\beta^2} \frac{Z}{uA} \left[2\ln\left(\frac{T}{I}\right) + \ln\left(\frac{2+\tau}{2}\right) + F^{\pm}(\tau) - \delta \right]$$

- Breaks down at low electron energies
 - Fractional loss per interaction becomes too large for CSDA to apply

- Outweighs collisional loss for electrons
- Release of photons due to acceleration of charged particle
- Total cross section

$$\sigma_{rad} = \frac{dT}{T + m_0 c^2} \frac{1}{Ndx} = \frac{1}{137} r_0^2 Z^2 \int_0^1 B.d\left(\frac{hv}{T}\right) = \frac{r_0^2 Z^2 \overline{B}}{137}$$

You don't have to learn this!

Bremsstrahlung

- When a charged particle is accelerated it emits photons with an amplitude proportional to the acceleration
- Acceleration

$$a \propto \frac{zZe^2}{m}$$

• Intensity of photons

$$I \propto \frac{z^2 Z^2 e^4}{m^2}$$

Why with electrons and not protons?

Bremsstrahlung from electrons vs nucleus

Summary of stopping power for charged particles

- Stopping power varies with particle kinetic energy
- Shape of curves are similar for a given particle
- Electrons have high radiative losses at high energies and high collisional losses at low energies

Any Questions?

w.dennis@ucl.ac.uk

Next time

X-ray Production

Using all we've learnt so far

