≜UCL

Ionising Radiation Physics Detectors II Semiconductor and Scintillation Detectors

Robert Moss

Department of Medical Physics and Biomedical Engineering robert.moss@ucl.ac.uk

Overview

- 6 hours on Detectors over the next 2 weeks
 <u>DETECTORS I</u>
 - Detector Fundamentals
 - Group Exercise
 - Gas Detectors

DETECTORS II

- Semiconductor Detectors
- Group Exercise/Demonstration
- Scintillation Detectors

Recommended Text

RADIATOR DEVECTION MALAGUMENDAY	ROOK Radiation detection and measurement / Glenn F. Knoll. Glenn F. Knoll Hoboken, N.J. : Wiley: 4th ed.: c2010 M Available >									*
TOP	Send to									
SEND TO	EXPORT BIBTEX	RIS (ENDNOTE OR REFMAN)	REFWORKS	ENDNOTEWEB	EASYBIB	77 CITATION	PERMALINK	PRINT	E-MAIL	
LINKS VIRTUAL BROWSE	Locations									
	Sign-in for more options 🛛 🔁 Sign in									
	REQUEST OPTIONS:									
	Science Library PHYSICS Q 10 KNO Hilde Details									
	(5 copies, 5 available, 0 requests)									
	1 - 5 of 5 Records									
	BARCODE	TYPE	LOAN PERIO	OD	RIPTION	STATUS				
	281010450X	Book	Sign in to	see Loan Period	Item on shelf					
	2810104475	Book	Sign in to	see Loan Period	Item on shelf	Item on shelf				
	2810104448	Book	Sign in to see Loan Period Item on shelf							
	2810104410	Book	Sign in to see Loan Period Item on shelf							
	2810104386	Book	Sign in to see Loan Period Item on shelf							

READ IT!

Radiation detection and measurement - Glen F. Knoll

- Online (3rd Edition)
 - <u>http://users.lngs.infn.it/~di</u> <u>marco/Radiation%20Dete</u> <u>ction%20and%20Measur</u> <u>ement,%203rd%20ed%2</u> <u>0-%20Glenn%20F.pdf</u>
 - <u>https://phyusdb.files.word</u> press.com/2013/03/radiati ondetectionandmeasurem entbyknoll.pdf

Semiconductor Detectors

Robert Moss

Basic Detector

Semiconductor Detectors

- Disadvantage of gas detectors is their limited energy resolution
 - ~30 eV of energy required to produce 1 electron
 - poor statistics = limited energy resolution
- Semiconductor detectors generate a large number of charge carriers per event
 - <5 eV to produce an electron</p>
 - good statistics = very good energy resolution

Electrons and Holes

Electron can be promoted to a higher shell and can move between atoms

Electrons locked in covalent bonds

No electrons in partially filled shells

Leaves a hole in the bond

Band Model

Band gaps for typical semiconductors

	Motorial	Energy gap (eV)				
	Material	0K	300K			
	Si	1.17	1.11			
	Ge	0.74	0.66			
	InSb	0.23	0.17			
	InAs	0.43	0.36			
	InP	1.42	1.27			
	GaP	2.32	2.25			
	GaAs	1.52	1.43			
	GaSb	0.81	0.68			
`	CdSe	1.84	1.74			
	CdTe	1.61	1.44			
r	ZnO	3.44	3.2			
	ZnS	3.91	3.6			

Effect of Temperature

- Fully filled valence band at T = 0 K
- For T > 0 K thermal energy can promote electron to conduction band
- Probability per unit time of thermally generated electron-hole pair

$$p(T) = CT^{2/3}exp\left(-\frac{E_g}{2kT}\right)$$

- T = absolute temperature E_g = band gap energy
- k = Boltzmann constant
- C = constant characteristic of material
- Depending on E_g, detector might need to be cooled to be useful

Effect of Electric Field

electron at -ve contact

Charge Carrier Mobility

- Without E field carriers have random thermal velocity
- E field causes carriers to move with a net drift velocity parallel to the direction of the field

$$v_h = \mu_h E$$
 $v_{h/e}$ = velocity of hole/electron $v_e = \mu_e E$ $\mu_{h/e}$ = mobility of hole/electron E = electric field magnitude

- Mobility of holes and electrons is similar
- A high E field saturation drift velocity is reached
- Total motion is a combination of thermal and drift velocities

Drift Velocity from E-field in Silicon

Real Semiconductors

- Intrinsic semiconductor one electron in conduction band ≡ one hole in valence band
- 'Impossible' to produce in practice
- Real semiconductors have some residual impurities

n-type Semiconductors

Addition of pentavalent impurity to tetravalent silicon (phosphorus has one more outer electron than silicon – excess electron)

p-type Semiconductors

(boron has one less outer electrons that silicon – leaves a hole)

n-type / p-type Comparison

n-type	p-type					
Extra electron bound to parent atom (due to +ve nucleus) but energy required to promote to conduction band is very small and thermal excitation means parent atom is ionised most of the time.	Holes exist without the need to promote an electron to the valence band. These are called acceptor sites.					
Holes not created when extra electron goes to conduction band.	Energy required to promote an electron from the valence band to fill the extra holes is small and the acceptor sites are occupied most of the time.					
When electron hole pair is produced, holes is filled quickly due to excess electrons so that conductivity is determined exclusively by flow of electrons.	Leave excess holes in valence band and recombination probability between conduction electrons and hole is increased.					
Electrons are majority carriers.	Electrons are minority carriers.					

Semiconductor Junction Detector

- Both n- and p-type
 electrically neutral
- 'Join' n-type to p-type
- Charge carriers migrate
 → E field
- E field resists further migration
- Depletion region
 - Vacant donor sites
 - Filled acceptor sites

Semiconductor Junction Detector

- Charge carrier created by ionisation are rapidly swept out of the depletion region
- Moving charge constitutes basic electrical signal
- Poor performance due to small E field
- Apply additional (reverse) bias to increase field strength

Semiconductor Detector Summary

- Many charge carrier per unit energy → good energy resolution
- Creation of charge carries depends on band structure
- 'Impossible' to create pure semiconductor crystal
- Energy levels modified by dopants

Group Task

- Split into groups
- Experiment setup as shown
- Use the relationships below to determine photopeak energy
- Use spectra to calculate the angles θ_1 and θ_2

HPGe: ENERGY = 0.2895 × ADU - 0.2346

CdTe: ENERGY = 0.0919 × ADU - 0.3957

Scintillation Detectors

Robert Moss

Basic Principle

Stage I: Scintillator Materials

Types of Scintillators

ORGANIC

- Low Z and ρ
- Inexpensive
- Fast

INORGANIC

- Range of Z and ρ
- Expensive
- Good light output

Organics

- 'Free' valence electrons form 'molecular orbitals' – π electronic structure
- Excitation due to absorption of KE of nearby charged particle
- Raised to S_{1x} , S_{2x} , S_{3x} , etc.

Relaxation Processes

- Non-radiative
 - Excited molecules relax to S₁₀
 - Almost instantaneous (ps)
- Fluorescence
 - Transition back to S_{0x} states
 - Fast (ns)
- Phosphorescence
 - Inter-system crossing $(S_1 \rightarrow T_1)$
 - Slow since T₁ more long-lived (up to ms)
 - Transition of T_1 back to S_{0x}

Phases

Solid

- (Poly)crystalline
- Fragile
- Directional efficiency

Liquid

- Dissolve scintillator in solvent
- Large volume possible
- Intimate contact with target

Plastic

- Polymerise solvent – 'solid liquid'
- Robust
- Machineable

Gas

- Anthracene
- Possible maybe not so useful

Waveshifter

- Function
 - Absorbs primary scintillant and reradiates at longer wavelength
 - Added to liquid and plastic (prior to polymerisation)
- Purpose
 - To more closely match emission to sensitivity of photodetector

Inorganics

- Crystalline atomic structure
- Powder or bulk solid
- Encapsulation
 - Environmental protection
 - Containment (health hazard)
 - Light tight
- Scintillation depends on electronic band structure

Aluminium/steel can with diffuse reflective inner surface

Examples

Scintillator	Light yield (photons/keV)	Light ouput(%) of Nal(Tl) bialkali pmt	Temperature coefficient of light output(%/C) 25°C to 50°C	1/e Decay time(ns)	Wavelength of max emission Im(nm)	Refractive index at Im	Thickness to stop 50% of 662 keV photons (cm)	Thermal expansion (/C)x10 ⁻⁶	Density g/cm³	Hygroscopic	Comments	
LaBr ₃ (Ce+Sr)	73	190	0	25	385	~2.0	1.8	8	5.08	yes	Ultimate energy resolution (2.2% @ 662keV)	
LaBr₃(Ce) BrilLanCe™ 380	63	165	0	16	380	~1.9	1.8	8	5.08	yes	General purpose, excellent energy resolution	
CLLB Cs ₂ LiLaBr ₆ (Ce)	43	115		180 1080	420	~1.85	2.2		4.2	yes	Dual Gamma-Neutron detection, excellent	
Nal(Tl)	38	100	-0.3	250	415	1.85	2.5	47.4	3.67	yes	General purpose, good energy resolution	
Nal(Tl+Li)	35	100	-0.3	230. 1.1μs 240, 1.4μs	419	1.85	2.5	47.4	3.67	yes	Neutron-Gamma Scintillator	
LaCl₃(Ce) BrilLanCe™ 350	49	70-90	0.7*	28	350	-1.9	2.3	11	3.85	yes	General purpose, good energy resolution	
Csl(Na)	41	85	-0.05	630	420	1.84	2	54	4.51	yes	High Z, rugged	
LYSO Lu _{1.8} Y ₂ SiO ₅ (Ce)	33	87	-0.28	36	420	1.81	1.1		7.1	no	Bright, high Z, fast, dense, background from ¹⁷⁶ Lu activity	
CdWO4	12-15	30-50	-0.1	14000	475	~2.3	1	10.2	7.9	no	Low afterglow, for use with photodioides	
CaF2(Eu)	19	50	-0.33	940	435	1.47	2.9	19.5	3.18	no	Low Z, α & β detection	
CsI(TI)	54	45	0.01	1000	550	1.79	2	54	4.51	slightly	High Z, rugged, good match to photodiodes	
BGO	8 - 10	20	-1.2	300	480	2.15	1	7	7.13	no	High Z, compact detector, low afterglow	
YAG(Ce)	8	15		70	550	1.82	2	~8	4.55	no	β-ray, X-ray counting, electron microscopy	
Csl(Pure)	2	4-6	-0.3	16	315	1.95	2	54	4.51	slightly	High Z, fast emission	
BaF2	1.8	3	0	0.6-0.8	220(195)	1.54	1.9	18.4	4.88	slightly	Fast component (subnanosecond)	
	10	16	-1.1	630	310	1.50	1.9	18.4	4.88	slightly	Slow component	
ZnS(Ag)	~50	130	-0.6	110	450	2.36			4.09	no	Coated on BC-400 or acrylic for α detection	

Band Structure - Reminder

Conduction Band Forbidden Band Valence Band

Electrons allowed to move through lattice

Electrons not permitted here in pure crystal

Electrons bound at lattice sites

Scintillation Process

- Absorption → elections excited to conduction band
- Scintillation → emission following relaxation
- Direct relaxation (CB to VB) → inefficient, wrong energy (not visible)

PROBLEM: WHAT DO WE DO?

Scintillation Process

- Add small amount of impurity called ACTIVATOR
- Creates special sites in the lattice with modified band structure
- New states within the forbidden band for relaxation path
- Smaller transitions → optical photons

Scintillation Process

A single ionising radiation (photon or particle) event creates many electron-hole pairs. The mean life-time of the activator excited sates is ~10⁻⁷ s. Electron migration is much faster so all excited impurity sites are essentially created at once. Deexcitation occurs on the time scale of the mean life-time.

Competing Processes - Phosphorescence

- Electron captured in activator excited state whose transition to the ground is forbidden
- Energy is required to move electron to an excited state with permitted route to ground
- One source of energy is thermal
- Optical photon is then released but is delayed compared to 'normal' emission.
- This SLOW component is phosphorescence, sometimes called "afterglow"

Competing Processes – Quenching

- Electron captured at an activator site which has non-radiative dexciation pathway
- Energy lost by vibration, etc.
- No optical photon is generated
- Not useful!

Stage II: Photodetectors

Types of Photodetectors

 Need some way of 'recording' the optical light output from scintillator

Photomultiplier Tubes

- Very sensitive
- Well understood
- Fragile

Solid State

- Mass produced
- Scalable
- Robust

Photomultiplier Tube (PMT)

Sensitive optical photon measurement device

- PMT
- High voltage between anode and cathode, divided between dynodes

PMT Process

Electron(s) created at photocathode

Accelerated and guided towards first dynode Impacts dynode and creates more electrons New electrons accelerated to next dynode Number of electrons multiplied at each stage Electron bunch reaches anode as measurable signal

[•]UCL

Coupling

- Maximise efficiency of optical photon transfer (scintillator → photocathode)
- Changes in refractive index along photon path must be minimised
- Typically use coupling compound to 'mount' the scintillator
- Common to use 'light guide' where scintillator and PMT cannot be co-located

Gain

- Amount of multiplication is controlled by the HV
- Almost any voltage can be used but PMTs for this application typically designed for few 100 to few 1000 V
- Alter to match application and hardware that's another story!

Divider

- HV is split between the dynodes to form multiplication chain
- Essentially a large potential divider
- Change resistor values to alter behaviour (e.g. make k-d1 voltage bigger to help charge collection)

Photocathode

- Thin layer on inside of PMT window
- Photocathode materials
 - Bialkali (Sb-Rb-Cs), multialkali (Na-K-Sb-Cs), GaAs, Ag-O-Cs, Sb-Cs, InGaAs, Cs-Te, Cs-I
- Window-photocathode combination
 - Bialkali on borosilicate: 300-600 nm
 - Bialkali on quartz: 150-600 nm (good for UV emitters)

Solid State Photodetectors

- Semiconductors pn junctions
- Band structure AGAIN!
- Two main types
 - Conventional photodiode no internal gain, simple electron-hole pair collection
 - Avalanche photodiode internal gain due to applied electric field

Scintillator Detectors Summary

- Two stage process
 - Radiation converted to light
 - Light collected by photodetector
- Two scintillators
 - Organic
 - Inorganic
- Readout sensor must be match to scintillator output

