Experimental Particle Physics

Andreas Korn, University College London

Andreas.Korn@cern.ch

• Lecture 1: Interactions with matter

- What particles interact how
- How can we use these interactions to detect particles?
- What can we measure?
- Lecture 2: Tracking Detectors

Particle Interactions with matter

- How do we observe?
- Need interactions to detect particles
- "Seeing" \rightarrow detection of scattered light
- "Feeling" \rightarrow Coulomb force
- "Hearing" \rightarrow acoustic detection of pressure
- Rely mostly on electromagnetic/ Coulomb interactions to observe particles

E-loss of charged particles: Ionisation

 charged particles heavier than electrons lose energy through collisions with electrons in the atom
 process of lonisation energy loss has

- process of Ionisation energy loss has important applications:
 - cancer radiation treatment

E-loss: Bethe-Bloch Formula

E-loss: Bethe-Bloch Formula

The Bragg Peak

Interaction of Photons

8

Bragg Peak: Cancer Treatment

Depth in the Body

Protons and carbon ions used to destroy tumors
Smeared Out Bragg Peak
→ maximum dose at tumor
→ reduced dose for
healthy tissue around

E-loss: Bethe-Bloch Formula

E-loss: Fluctuations

- Landau, Vavilov and Bichsel
 - thin absorber: Landau
 - general treatment: Vavilov \rightarrow now better descriptions
 - limit Gaussian
- Long high energy tail $\rightarrow \delta$ -electrons

E-loss of Electrons: Bremsstrahlung

- "Breaking Radiation"
- $\sim 1/m^2 \rightarrow$ mostly important for electrons/positrons - above critical Energy E :
- Bremsstrahlung more important than ionisation

Radiation Length

Bremsstrahlung and Pair creation governed by the same principles

Radiation length L=X_r:
$$\frac{1}{X_0} = 4N_A \frac{\alpha^3}{m^2} \frac{Z^2}{A} \rho \left(\ln \frac{183}{Z^{1/3}} \right)$$

Typical values: plastic: 30cm, lead: 0.5cm

Electromagnetic cascades

$$\frac{dE}{dX} = \frac{E}{X_0}$$
$$N(t) = 2^t; E(t) = \frac{E_0}{N} = \frac{E_0}{2^t}$$

Shower stops when the critical energy $E_{_{_{}}}$ is reached and ionisationloss starts to dominate

$$N_{\max} = \frac{E_0}{E_c} = 2^{t_{\max}}$$

Multiple scattering

- Multiple Coulomb scattering
- No change in energy
- Average direction change is 0
- But spread!

Particle Interactions with matter

Reminder of important interactions:

- Charged particles
 - Ionisation
- Electrons
 - Bremsstrahlung: radiation length
- Photons
 - Photoeffect
 - Compton Scatter
 - Pair creation: radiation length
- Hadrons
 - Strong interaction: nuclear interaction length
- Neutrinos
 - Weak interactions

Particle Interactions with matter

Particle Detectors

Measure

- Position
- Time
- Momentum
- Energy
- Particle Identification (e,μ,π,K,p)
 - dE/dX
 - Cerenkov radiation
 - Transition radiation
 - Time of Flight
- Specialised Detectors for
 - Neutrino detection
 - Neutron detection

Position measurement

- Most detectors record passing of a charge
 - Scintillators
 - Gaseous Detectors
 - Ionisation Chambers
 - Geiger Mueller
 - Proportional Counters
 - Multi wire chambers
 - Micro pattern gas detectors
 - Semi-conductor detectors
 - Silicon
 - Germanium
 - Diamond

Position: Gaseous Detectors

Position: Gaseous Detectors

Proportional counters

- Gas amplification \rightarrow avalanche
- 1st Townsend coefficient α
- Gas gain M

$$N = N_0 e^{\alpha(E)x}$$
$$M = \frac{N}{N_0} = e^{\left(\int \alpha(E(x)) dx\right)}$$

Proportional counters

- Gas amplification \rightarrow avalanche
- 1st Townsend coefficient α
- Gas gain M

Gas Detectors

• Gas amplification \rightarrow avalanche

- a) none \rightarrow Ionisation chamber
- b) Geiger Mueller \rightarrow saturation
- c) streamer mode (with Quenchgas)

Multiwire proportional drift chambers

• CDF's multi-wire proportional drift chamber : > 30,000 wires !

Translate drift time into position
Need to reconstruct "track" from a few hits along the path

Diffusion & Drift in Gases

- Diffusion: in all directions
 - Limits resolution!
- Directed drift in electric field:
 - Scattering with gas atoms
 - Typical drift velocities
 - Electrons 5 cm/µs
 - Ions x1000 slower!

Time Projection Chamber TPC

Perfect detector: almost empty volume!

ATLAS Muon System

Muons: Monitored Drift Tubes

ŝ

- Precision chambers
- 3-4 layers of drift tubes
- $\sigma_{_{Pt}}$ ~10% at 1 TeV

2 RPC layers

2x3 MDT

Resistive plate chambers

Time dispersion $\approx 1..2$ ns \rightarrow suited as trigger chamber Rate capability ≈ 1 kHz / cm²

Problem: Operation close to streamer mode.

Muons: Monitored Drift Tubes

ŝ

- Precision chambers
- 3-4 layers of drift tubes
- $\sigma_{_{Pt}}$ ~10% at 1 TeV

2 RPC layers

2x3 MDT

Micro Pattern Gas Detectors MPGD

- Micro fabrication of readout structures
- Microstrip gas chambers
- Gas Electron Multipliers (Thick)
- Good granularity
- Can be fabricated in large areas

Position measurement: Scintillators

	Nal(Tl)	BaF ₂	CsI(TI)	CeF ₃	BGO Bi4Ge3O12	PWO PbWO4	LuAG:Ce
X ₀ [cm]	2.59	2.03	1.86	1.66	1.12	0.92	1.41
ρ [g/cm ³]	3.67	4.89	4.53	6.16	7.13	8.2	6.73
τ [ns]	230	0.6 620	1050	30	340	15	60
λ [nm]	415	230 310	550	310 340	480	420	535
η@λ _{max}	1.85	1.56	1.80	1.68	2.15	2.3	1.84
LY [%Nal]	100	5 16	85	5	10	0.5	50

- Organic
 - Plastic, liquid
 - Fast: 1-10 ns
- Inorganic Crystals
 - Nal, BGO,
 - Heavy elements possible
 - better energy resolution
 - Slower: 200-2000ns

Scintillators: principle

Plastic Scintillator

Readout: Photomultiplier Tube

Charged Particle

- Convert light into electrical signal
- Amplification
- Come in many different shapes and sizes
- Commonly used to readout scintillators!

Scintillating Fibre (Spaghetti) Trackers

Semiconductor detectors

- Basic principle: reverse biased diode
- Typical material: germanium, silicon
- Good energy resolution: ~3eV per electron-hole pair: N=E/3eV
- Can be finely segmented \rightarrow excellent position resolution ${\sim}\mu m$

Semiconductor detectors

Semiconductor detectors

Germanium detectors

- Excellent $\Delta E/E \sim 0.3\%/\sqrt{E(MeV)}$
- Often used for γ-ray spectroscopy (nuclear physics)

Silicon microstrip detectors

- $\sim 5 \mu m$ position resolution
- "Vertex detectors" in HEP experiments

Position: Semiconductor detectors

Fine spatial segmentation \rightarrow excellent spatial resolution ${\sim}\mu m$

Pixels

Strips

Position: Semiconductor detectors

Fine spatial segmentation \rightarrow excellent spatial resolution $\sim \mu m$ Binary readout of pitch p (variance of constant distribution): $\sigma_x = \frac{p}{\sqrt{12}}$

strips only one coordinate \rightarrow two layers for space points **Real** and ghost hits \rightarrow shallow stereo angle

Pixel Module/Silicon Sensor

Pixel FrontEnd Chips

11mm

Modern PhotoDetectors

Modern PhotoDetectors

Nicoleta Dinu

From GM-APD to SiPM

• GM-APD – gives no information on the light intensity

Current (a.u.) Standardized output signal

Time (a.u.)

• SiPM (proposed by Sadygov and Golovin in the '90)

- matrix of tiny pixels in parallel / each pixel = GM-APD + R_{quench}

- output signal is proportional to the number of triggered pixels

Modern PhotoDetectors

			VACUUM TECHNOLOGY		SOLID-STATE TECHNOLOGY		
		PMT	MCP-PMT	HPD	PN, PIN	APD	GM-APD
Photon detection efficiency	Blue	20 %	20 %	20 %	60 %	50 %	30%
	Green-yellow	40 %	40 %	40 %	80-90 %	60-70 %	50%
	Red	< 6 %	< 6 %	< 6 %	908D0%%	80 %	40%
Timing / 10 ph.e		~ 100 ps	$\sim 10 \text{ ps}$	~ 100 ps	tens ns	few ns	tens of ps
Gain		10 ⁶ - 10 ⁷	10 ⁶ - 10 ⁷	3 - 8x10 ³	1	~22000V	10 ⁵ - 10 ⁶
Operation voltage		1 kV	3 kV	20 kV	10-100V	100-500V	< 100 V
Operation in the magnetic field		< 10 ⁻³ T	Axial magnetic field ~ 2 T	Axial magnetic field ~ 4 T	No sensitivity	No sensitivity	No sensitivity
Threshold sensitivity (S/N>>1)		1 ph.e	1 ph.e	1 ph.e	~100 ph.e	~10 ph.e	~1 ph.e
Shape characteristics		sensible bulky	compact	sensible, bulky	robust, compact, mechanically rugged		

Nicoleta Dinu

• Fast detectors: scintillator, RPC

• Electronics needs to match!

Detector Type	Intrinsinc Spatial Resolution (rms)	Time Resolution	Dead Time
Resistive plate chamber	$\lesssim 10 \ { m mm}$	$1 \text{ ns} (50 \text{ ps}^a)$	
Streamer chamber	$300 \ \mu \mathrm{m}^b$	$2~\mu{ m s}$	$100 \mathrm{~ms}$
Liquid argon drift $[7]$	${\sim}175{-}450~\mu{\rm m}$	$\sim 200~{\rm ns}$	$\sim 2~\mu { m s}$
Scintillation tracker	${\sim}100~\mu{\rm m}$	$100 \text{ ps}/n^c$	$10 \mathrm{~ns}$
Bubble chamber	10–150 $\mu {\rm m}$	$1 \mathrm{ms}$	50 ms^d
Proportional chamber	50–100 $\mu \mathrm{m}^e$	2 ns	$20\mathchar`-200~ns$
Drift chamber	50–100 $\mu {\rm m}$	2 ns^f	$20\text{-}100~\mathrm{ns}$
Micro-pattern gas detectors	30–40 $\mu {\rm m}$	$<10~\mathrm{ns}$	$10\text{-}100~\mathrm{ns}$
Silicon strip	pitch/ $(3 \text{ to } 7)^g$	few ns^h	$\lesssim 50 \ {\rm ns}^h$
Silicon pixel	$\lesssim\!10~\mu{ m m}$	few ns^h	$\lesssim 50 \ {\rm ns}^h$
Emulsion	$1~\mu{ m m}$		

Detector trends: Timing R&D: use Low Gain Avalanche Diodes (LGAP) timing optimised: UltraFastSiliconDetectors (UFSD)

• Lecture 1: Interactions with matter

• Lecture 2: Tracking Detectors

- How are position measurements combined

- To measure track parameters
- momentum
- Impact parameter

- How do we find tracks?

Multiwire proportional drift chambers

• CDF's multi-wire proportional drift chamber : > 30,000 wires !

Translate drift time into position
Need to reconstruct "track" from a few hits along the path

Momentum measurement

- Utilise that charged particles bend inside a magnetic field
- Reconstruct curvature radius
 - R as fitted track parameter

Momentum measurement

$$s = R - d = R - R\cos\frac{\theta}{2} = R(1 - \cos\frac{\theta}{2}) = R2\sin^{2}\frac{\theta}{4} \sim \frac{R\theta^{2}}{8} \sim \frac{RL^{2}}{8R^{2}} = \frac{L^{2}}{8R} = \frac{qBL^{2}}{8p}$$

for 3 points : $\sigma_{s}^{2} = \frac{1}{1 - 3}\sum_{x} \sigma_{x}^{2} \Rightarrow \sigma_{s} = \sqrt{\frac{3}{2}}\sigma_{x}$,
N points (Gluckstern) : $\sigma_{s} = \sqrt{\frac{720}{64(N+4)}}\sigma_{x}$
 $\frac{\sigma_{p}}{p} = \frac{\sigma_{s}}{s} \sim \frac{p\sigma(x)}{BL^{2}}$

53

Track parameters

• Charged particles ina magnetic field follow a Helix Trajectory (assuming no energy loss \rightarrow spiral)

- Parameters:
 - Angles: θ and ϕ
 - Curvature/Radius: Q/P
 - Impact parameter/Position offset: d0, z0 or li

$$\begin{split} \text{Impact Parameter resolution } \sigma_{d0} \\ \frac{\sigma_{d0}}{\sigma_o} &= \frac{r_i}{r_o - r_i} \\ \sigma_{d0}^2 &= \left(\frac{r_o}{r_o - r_i}\right)^2 \sigma_i^2 + \left(\frac{r_i}{r_o - r_i}\right)^2 \sigma_o^2 + \sigma_{MS}^2 \\ \sigma_{MS} &\sim \frac{1}{p} \sqrt{\frac{x}{X_0}} \end{split}$$

$$\frac{\sigma_{d0}}{\sigma_i} = \frac{r_o}{r_o - r_i}$$

Impact Parameter resolution σ_{μ} d0

inner layer at small radius
good spatial resolution

$$\sigma_{d0}^2 = \left(\frac{r_o}{r_o - r_i}\right)^2 \sigma_i^2 + \left(\frac{r_i}{r_o - r_i}\right)^2 \sigma_o^2 + \sigma_{MS}^2$$

$$\sigma_{MS}\sim rac{1}{p}\sqrt{rac{x}{X_0}}$$

 r_i

r - r

$$\frac{\sigma_{d0}}{\sigma_i} = \frac{r_o}{r_o - r_o}$$

Reduce multiple scattering: Low material

 σ_{d0}

Cosmics for Alignment: Pixel Bow

Silicon Alignment

- Dramatic improvement from nominal (survey not included)
- Residuals show no bias
- Achieved resolution close to expected

Detector trends: tracker geometry

Ideally: constant track density (pixel occupancy) in all sensors The track density is constant in eta at LHC • up to phase space limit, which is above eta 2.5 for many processes of interest Achieved on a cylindrical surface -> barrel-only layout?

Ideally tracks coming from the I.P. should cross the sensors perpendicularly (to minimize material and minimize number of sensors needed)

• This condition implies a spherical surface for point source, ellipsoid for the LHC beam spot

Transverse momentum accuracy should be constant in eta

- the B field integral along tracks should be constant
- In a solenoidal field this implies cylindrical layers, constatnt radial lever arm

 Reminder: the momentum accuracy is proportional to the square of the radial lever arm

T.Todorov, October 2011

ATLAS: Tracker Upgrade

- Inclined pixel layout
- Endcap Rings

Titanium CO2 cooling pipe embedded in ring.

z [mm]

Electrical services (flex) embedded in ring.

Find the 50 GeV Track!

Where is the 50 GeV Track?

Track finding

- Various methods
 - Local:
 - find seeds (driven by granularity and occupancy)
 - Inside out
 - Outside in
 - Search roads
 - Extend \rightarrow Kalman filter
 - Global
 - Example: Hough transform

+ y_

m

= -x_m

Track finding: Hough Transform

Track finding: Kalman Fitter Update track state (prediction from measurement)

- Position + covariance
- Look for new hits in predicted search window

Putting it all together

Signatures

• Leptons: e, μ, (τ)

- Clean, distinctive signature:
 - Track
 - e:Calorimeter µ:MS track
- distinguished from QCD bkg
- Reconstruct particle momenta
- Jets
- Missing Et (MET)
- b-jets:
 - B-tagging: exploit b-hadron lifetime
 - displaced vertices
 - Needs excellent tracker

• Resonances:

 Reconstruct mass peaks from 4-vectors of decay products

Lepton Identification

Bonus Slides

Andreas Korn BUSSTEP UCL, 25th August

Particle Identification/PID: Time of Flight

• Measure very precisely the time taken for a particle to traverse a known distance : v = L/(t1-t2) $p = \gamma\beta m$

Cerenkov Radiation

Typical blue Cerenkov light in a nuclear reactor core

PID: Cerenkov Radiation

Threshold detectors

Record the presence of Cerenkov radiation emitted in a particular volume, often filled with gas or low density material.

$$CO_2, N_2, air,...$$

 $1-5 m$

<u>Ring-Imaging Detectors</u> Reconstruct the actual Cerenkov cones themselves - much more complicated but much more powerful.

Cerenkov Radiation in SuperK

Cerenkov Radiation

Cerenkov Radiation in IceCube

 v_{μ} produces a μ , which gives

 v_e produces an electron, which gives rise to a "fuzzy" ring

Lighter Electrons scatter more along

Cerenkov Radiation

PID: dE/dX

•Typical Bethe-Bloch formula $\sim \gamma\beta$ •p = $\gamma\beta m \rightarrow \gamma\beta$ = p/m •Minimum and start of lower rise shifted with mass when plotted versus momentum

Particle ID summary

Different methods work in different regimes

- •For $\gamma\beta$ <3 •For $3 < \gamma \beta < 14$

•For 1000 < $\gamma\beta$

- : Time of Flight & dE/dX
- : Threshold Cerenkov
- •For 14< $\gamma\beta$ <140 : Ring-Imaging Cerenkov
- •For 100< $\gamma\beta$ <1000 : dE/dX relativistic rise
 - : Transition radition

Bonus Slides

Missing transverse Energy MET

Mono-Jet: Backgrounds

L

Jets: b-tagging

Exploit properties of b-meson decay

- Long lifetime (cτ~ 450 µm)
 - \rightarrow ~ several mm flight path
 - → secondary vertices
- Semileptonic decays → soft lepton tagging

b-tagging

Example of a b-tagged jet

86

Object Reconstruction

- Tracking
- Find connected clusters in the Calorimeter
- Extrapolate/connect tracks with
 - Electromagnetic Calorimeter
 - Muon Spectrometer
 - Hadron Calorimeter
 - EM clusters without a track
 - Missing Energy/Momentum
- Reconstruct vertices from Track intersections

• Displaced vertices of electrons \rightarrow conversions ($\gamma \rightarrow e^+e^-$)

Andreas Korn

Displaced vertices → b-jets

- \rightarrow Electron Candidates
- \rightarrow Muon Candidates
- \rightarrow Hadronic Jets
- \rightarrow Photon Candidates
- \rightarrow Neutrino Candidates

BUSSTEP UCL, 25th August 8

Experiments: SuperNemo

Experiments: SuperNemo

- Tracking & vertexing also key in SuperNemo
- Distinguish real $\beta^{-}\beta^{-}$ decays from background

Experiments: g-2

Ê

Measuring Efficiency

- From MC -With scale factor Tag & Probe With a subsample - e.g. collect loose object (10 GeV muons) and measure efficiency of
 - tighter object (20 GeV muons)

Tag & Probe: Efficiency Measurement

Use standard candles as muon source (J/ψ, Υ, Ζ)
Tag with a well reconstructed muon
Probes: track (reco eff.), stand alone muon (tracking eff.), reconstructed muon (trigger eff.)

Bonus Slides

Modern PhotoDetectors

Nicoleta Dinu