Brunel University Queen Mary, University of London Royal Holloway, University of London University College London

Intercollegiate post-graduate course in High Energy Physics

Paper 1: The Standard Model and Beyond part 1

Monday, 10 January 2014

Time allowed for Examination: 3 hours

Answer ALL questions

Books and notes may be consulted

The Standard Model

Question 1 (20 marks)

At a collider, two high energy particles A and B with momenta p_A and p_B and masses m_A and m_B collide head on. Derive the expression for the centre-of-mass energy squared when the particle masses are neglected [2]

and when the masses are not neglected [2]

Using this latter expression, calculate the centre-of-mass energy of a possible collider where collisions are made between protons with momentum of 20 GeV and electrons with momentum of 5 GeV, and compare it to the centre-of-mass energy of an asymmetric proton-proton collider with the same beam momenta. [2]

Now consider one proton to be at rest. Derive the formula for the centre-of-mass energy of electron-proton and proton-proton fixed-target experiments. [2]

Write the Klein-Gordon equation, and explain why it is possible to define a conserved 4dimesional current. [4]

Write the expression of this current for a plane wave. [2]

Show how an electromagnetic potential A^{μ} can modify the momentum operator, and indicate the resulting electromagnetic potential.

[4]

Write a transition amplitude between two generic waves.

[2]

CONTINUED

Question 2 (20 marks)

Write the transition amplitude between two spinless states interacting through electromagnetic interactions.

Show that the electromagnetic potential

$$A^{\mu} = \frac{-g^{\mu\nu}j_{\nu}^{DB}}{q^2}$$

satisfies Maxwell's equations, in the form

$$\Box^2 A^\mu(x) = j^\mu(x)$$

with $j^{\mu}(x)$ being the current between two states B and D.

Discuss the relation between the transmission amplitude T_{fi} and the number of transitions for unit time and volume, and write an example of a transition amplitude to be used in the case of scattering between spinless particles.

[4]

[6]

[4]

Discuss the differences in the phase-space definition (flux factor) between a $2 \rightarrow 2$ interaction and a two-body decay of a heavy particle.

CONTINUED

[6]

Question 3 (20 marks)

Write down Pauli's matrices, and their relation with the operators for spin and spin angular momentum. Write commutation and anti-commutation relations between the matrices.

Write the Dirac equation in standard and adjoint form, and the relations between the matrices α_i , β and the Pauli matrices.

Derive the Hermitian conjugate of the γ matrices. Show that the combination of the standard and adjoint form of the Dirac equation leads to a conserved four-current.

[5]

[5]

[5]

[5]

Write the free-particle solution of the Dirac equation, and derive the eigenvalues of the spin states.

CONTINUED

Question 4 (20 marks)

Define the Mandelstem variables, and draw Feynman diagrams for Compton scattering as well as those for $e^+e^- \rightarrow \gamma\gamma$.

[5]

[5]

[8]

Write the generic amplitude T_{fi} for Compton scattering, in the limit $m_e \rightarrow 0$

Using your expression for T_{fi} , derive the cross-section for the first diagram of Compton scattering in terms of the Mandelstem variables.

Describe the relationship between the cross-section for Compton scattering and that for e^+e^- annihilation. [2]

Question 5 (20 marks)

Write the convolution of a wavefunction at initial coordinates $\Psi(\underline{r}, t)$ with a Green's function to produce a wave function after scattering. [4]

Write Schroedinger's equation for a plane wave incident on a potential $V(\underline{r}, t)$ on top of a constant energy level H_0 . [5]

Show that in the approximation that the potential acts for a small time interval Δt_1 , where it is much larger than the Hamiltonian H_0 , Schroedinger's equation can be written as $\Delta \psi(\underline{r}_1, t_1) = -iV(\underline{r}_1, t_1)\psi(\underline{r}_1, t_1)\Delta t_1$ [5]

If a final-state planar wave is written as $\psi(\underline{r}_1, t_1) = \phi(\underline{r}_1, t_1) + \Delta \psi(\underline{r}_1, t_1)$, and applying the Green's function in point (\underline{r}_1, t_1) , show that after scattering in a position (\underline{r}', t')

$$\psi(\underline{r'},t') = \phi(\underline{r'},t') + \int d^4x_1 G_0((\underline{r'},t';\underline{r}_1,t_1)V(\underline{r}_1,t_1)\phi(\underline{r}_1,t_1)$$
[6]

CONTINUED

Question 6 (20 marks)

Draw the Feynman diagram for electron-muon scattering at tree level, indicating the incoming and outgoing currents. [4]

Given an electron current of the form $j_{fi}^{\mu} = -e(p_f + p_i)^{\mu}e^{i(p_f - p_i)x}$, write the transition amplitude for a Coulomb potential, calling k and k' the initial and final momenta for the electron, and p and p' the same quantities for the muon. [6]

Denoting the electron mass by m and the muon mass by M, the squared scattering amplitude is:

$$|T_{fi}|^2 = \frac{e^4}{4q^4} Tr \Big[(\not k' + m) \gamma_\mu (\not k + m) \gamma_\nu \Big] Tr \Big[(\not p' + M) \gamma^\mu (\not p + M) \gamma^\nu \Big]$$

Show how this expression can be simplified in the relativistic limit, considering that products involving an odd number of γ matrices are zero. [6]

Rewrite the simplified expression for $|T_{fi}|^2$ using Mandelstam variables. [4]

END OF PAPER