Brunel University Queen Mary, University of London Royal Holloway, University of London University College London

Intercollegiate post-graduate course in

High Energy Physics

Paper 2: The Standard Model and

Beyond part 2

Wednesday, 25 January 2017

Time allowed for Examination: 2.5 hours

Answer four questions out of six (80 marks)

Books and notes may be consulted

1. Higgs sector of the Glashow Salam Weinberg model [20 marks]

The kinetic and potential terms relating to the Higgs field in the Standard Model are given by

$$\mathcal{L}_{\Phi} ~~=~~ \mathcal{L}_{\Phi- ext{kinetic}} - V\left(\Phi^{\dagger}\Phi
ight) \,,$$

wherein

$$\mathcal{L}_{\Phi-\text{kinetic}} = \left(\boldsymbol{D}_{\mu}\Phi\right)^{\dagger}\left(\boldsymbol{D}^{\mu}\Phi\right), \qquad V\left(\Phi^{\dagger}\Phi\right) = \mu^{2}\Phi^{\dagger}\Phi + \lambda\left(\Phi^{\dagger}\Phi\right)^{2},$$

and

$$oldsymbol{D}_{\mu} = \partial_{\mu} + ig' rac{Y_{\phi}}{2} B_{\mu} + ig_W oldsymbol{W}_{\mu} , \qquad \Phi = \left(egin{array}{c} \phi^+ \ \phi^0 \end{array}
ight) .$$

Inside D_{μ} , B_{μ} is the hypercharge gauge field, Y_{ϕ} the hypercharge of the Higgs doublet Φ , and g' is the hypercharge gauge field coupling constant. Furthermore, $W_{\mu} = \tau^a W^a_{\mu}$, where W^a_{μ} (a = 1, 2, 3), are the three W gauge boson fields, and τ^a are the Pauli spin matrices divided by two. g_W is the weak coupling constant.

(a) Compute $\Sigma^{\dagger}\Sigma$ in terms of $\Phi^{\dagger}\Phi$, where Σ here is the 2 × 2 complex matrix

$$oldsymbol{\Sigma} = \left(egin{array}{cc} \phi^{0*} & \phi^+ \ -\phi^{+*} & \phi^0 \end{array}
ight) \,.$$

Hence show that $V(\Phi^{\dagger}\Phi)$, as given above, can be written as

$$\tilde{V}\left(\boldsymbol{\Sigma}^{\dagger}\boldsymbol{\Sigma}\right) = \frac{1}{2}\mu^{2} \operatorname{Tr}\left[\boldsymbol{\Sigma}^{\dagger}\boldsymbol{\Sigma}\right] + \frac{1}{2}\lambda \operatorname{Tr}\left[\boldsymbol{\Sigma}^{\dagger}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{\dagger}\boldsymbol{\Sigma}\right].$$
[7]

(b) Show that $\tilde{V}\left(\boldsymbol{\Sigma}^{\dagger}\boldsymbol{\Sigma}\right)$, given in (a), is invariant under the transformation $\boldsymbol{\Sigma} \to \boldsymbol{\Sigma}' = \boldsymbol{U}_{L}\boldsymbol{\Sigma}\boldsymbol{U}_{R}$, where \boldsymbol{U}_{L} and \boldsymbol{U}_{R} are two different local SU(2) transformations $(\boldsymbol{U}_{L/R} = \boldsymbol{U}_{L/R}^{\dagger})$.

[7]

(c) The kinetic part of the Higgs Lagrangian can be written as

$$\mathcal{L}_{\Phi- ext{kinetic}} = rac{1}{2} ext{Tr} \left[\left(ilde{m{D}}_{\mu} m{\Sigma}
ight)^{\dagger} \left(ilde{m{D}}_{\mu} m{\Sigma}
ight)
ight]$$

 \boldsymbol{U}_{L} is the usual local $SU\left(2\right)_{L}$ gauge transformation, under which

$$\boldsymbol{W}_{\mu} \rightarrow \boldsymbol{W}_{\mu}^{\prime} = \boldsymbol{U}_{L} \boldsymbol{W}_{\mu} \boldsymbol{U}_{L}^{\dagger} - (ig_{W})^{-1} \left(\partial_{\mu} \boldsymbol{U}_{L}\right) \boldsymbol{U}_{L}^{\dagger}.$$

Working in the limit that the hypercharge coupling is zero (g' = 0) the covariant derivative is

$$\hat{\boldsymbol{D}}_{\mu}\boldsymbol{\Sigma} = \partial_{\mu}\boldsymbol{\Sigma} + ig_W \boldsymbol{W}_{\mu}\boldsymbol{\Sigma}$$
.

For g' = 0 show that $\tilde{D}_{\mu}\Sigma \to U_L\tilde{D}_{\mu}\Sigma$, and hence that $\mathcal{L}_{\Phi-\text{kinetic}}$ is invariant under this transformation.

[6]

2. Nuclear β -decay [20 marks]

You should neglect the positron mass throughout this question.

In the limit that the nucleons may be considered non-relativistic, the amplitude for the β -decay of the ¹⁴O oxygen isotope to the ¹⁴N^{*} nitrogen isotope,

$$^{14}\text{O} \rightarrow ^{14}\text{N}^* + e^+ + \nu_e$$

is given by

$$-i\mathcal{M} = -iG_F \,\bar{u}\left(p_{\nu}\right)\gamma^0 \left(1-\gamma^5\right) v\left(p_e\right) \,\left(2m_N\right) \,,$$

where G_F is the Fermi constant, with p_e and p_{ν} denoting the positron and neutrino (four) momenta respectively. The nucleon mass is denoted m_N .

- (a) Compute $i\mathcal{M}^*$.
- (b) Show that the squared amplitude summed over positron and neutrino spin polarizations reduces to

$$\sum_{\text{spins}} |\mathcal{M}|^2 = 2G_F^2 (2m_N)^2 \operatorname{Tr} \left[\not p_\nu \gamma^0 \not p_e \gamma^0 (1 - \gamma^5) \right].$$

Remember to neglect the positron mass.

(c) Using the Dirac trace identity

$$\operatorname{Tr}\left[\not p_{\nu}\gamma^{0} \not p_{e}\gamma^{0} \left(1-\gamma^{5}\right)\right] = 8E_{e}E_{\nu} - 4p_{e}.p_{\nu},$$

determine $\sum_{\text{spins}} |\mathcal{M}|^2$ in terms of G_F , m_N , E_e , E_{ν} and $\theta_{e\nu}$, where E_e and E_{ν} denote the energies of the positron and neutrino, with $\theta_{e\nu}$ labeling the angle between the neutrino and positron momenta.

[5]

(d) Including the phase space measure and flux factor the differential decay width can be written

$$d\Gamma = \frac{1}{2\pi^3} G_F^2 \left[1 + \cos \theta_{e\nu} \right] \left| \vec{p}_e \right|^2 d \left| \vec{p}_e \right| d \cos \theta_{e\nu} E_\nu^2 dE_\nu \, \delta \left(E_0 - E_e - E_\nu \right) \,,$$

where $|\vec{p}_e|$ is the magnitude of the positron's three-momentum and E_0 is the energy released to the lepton pair. Integrate $d\Gamma$ over E_{ν} and $\cos \theta_{e\nu}$ to obtain the positron spectrum

$$\frac{d\Gamma}{d\,|\vec{p_e}|} = \frac{G_F^2}{\pi^3}\,\,|\vec{p_e}|^2\,(E_0 - E_e)^2\,\,.$$
[4]

ſ	4	

[7]

3. Non-Abelian gauge theory [20 marks]

Unless otherwise stated you should assume the usual summation convention applies: repeated SU(N) indices are implicitly summed over.

In an SU(N) gauge theory the covariant derivative is given by

$$oldsymbol{D}_{\mu}=\partial_{\mu}+igoldsymbol{A}_{\mu}\,,\qquadoldsymbol{A}_{\mu}=oldsymbol{T}^{i}A^{i}_{\mu}\,,$$

with \mathbf{T}^{i} the *i*'th generator of SU(N) and A^{i}_{μ} its corresponding gauge field $(i = 1, ..., N^{2} - 1)$. Under a local SU(N) transformation $\mathbf{U} = \exp(-i\alpha^{i}\mathbf{T}^{i})$ the covariant derivative and the gauge fields change according to

$$oldsymbol{D}_{\mu} o oldsymbol{D}_{\mu}^{\prime} = oldsymbol{U} oldsymbol{D}_{\mu} oldsymbol{U}^{\dagger} \,, \qquad ext{and} \qquad oldsymbol{A}_{\mu} o oldsymbol{A}_{\mu}^{\prime} = oldsymbol{U} oldsymbol{A}_{\mu} oldsymbol{U}^{\dagger} + rac{\imath}{g} \left(\partial_{\mu} oldsymbol{U}
ight) oldsymbol{U}^{\dagger} \,.$$

The generators of SU(N) obey the lie algebra $\left[\mathbf{T}^{a}, \mathbf{T}^{b}\right] = if^{abc}\mathbf{T}^{c}$, where f^{abc} are the group structure constants. The field strength tensor is given by

$$oldsymbol{F}_{\mu
u}=-rac{i}{g}\left[oldsymbol{D}_{\mu},oldsymbol{D}_{
u}
ight]\,,$$

where g is the coupling constant of the theory.

(a) Determine how $F_{\mu\nu}$ changes under a local SU(N) transformation, U, in terms of the initial $F_{\mu\nu}$ and U.

(b) Hence show that the Yang-Mills Lagrangian, $\mathcal{L}_{YM} = -\frac{1}{2} \text{Tr} [\mathbf{F}_{\mu\nu} \mathbf{F}^{\mu\nu}]$, is invariant under local SU(N) gauge transformations.

(c) Show that the field strength tensor, as written above, can be re-expressed as $\mathbf{F}_{\mu\nu} = \mathbf{T}^c F^c_{\mu\nu}$ where $F^c_{\mu\nu}$ is the *colour stripped* field strength tensor $F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu$. Hint: make use of the commutator relation for the SU(N) generators.

[10]

4. Goldstone bosons [20 marks]

Unless otherwise stated you should assume the usual summation convention applies: repeated indices are implicitly summed over.

Consider a simple scalar field theory, of N real scalar fields ϕ_i , i = 1, 2, ..., N, with Lagrangian

$$\mathcal{L}(\phi_i, \partial_\mu \phi_i) = \frac{1}{2} \left(\partial_\mu \phi_i \right) \left(\partial^\mu \phi_i \right) - V \left(\phi_i \phi_i \right) , \qquad V \left(\phi_i \phi_i \right) = \frac{1}{2} \mu^2 \phi_i \phi_i + \lambda \left(\phi_i \phi_i \right)^2 .$$

(a) Given that U is a global SO (N) transformation matrix, determine / write down $U_{ij}U_{ik}$.

(b) Compute the effect of the global SO (N) transformation $\phi_i \to \phi'_i = U_{ij}\phi_j$ on $\phi_i\phi_i$.

[3]

[3]

(c) Compute the effect of the global SO (N) transformation $\phi_i \to \phi'_i = U_{ij}\phi_j$ on \mathcal{L} .

[2]

(d) Write the potential in terms of $|\phi| = \sqrt{\phi_i \phi_i}$ and, assuming the parameter μ^2 is negative, show the potential minima has extrema located along $|\phi| = a = \sqrt{-\frac{\mu^2}{4\lambda}}$.

[5]

(e) Assume the vacuum state of the theory is at $(\phi_1, \phi_2, ..., \phi_N)|_{\text{vacuum}} = (0, 0, ..., a)$, i.e. ϕ_N acquires a non-zero vacuum expectation value $\langle \phi_N \rangle_{\text{vacuum}} = a$, with a as given in part (d). Determine, in terms of $\sum_{i=1}^{N-1} \phi_i^2$ and χ^2 , only the terms in the potential which are quadratic/bilinear in $\phi_1, \phi_2, ..., \phi_{N-1}$ and the shifted field χ , where $\phi_N = \chi + a$. What are the masses of $\phi_1, \phi_2, ..., \phi_{N-1}$ and χ ?

[7]

5. Hadron collider cross section [20 marks]

Throughout this question you should assume that the masses of the colliding hadrons (protons) and final-state leptons are zero.

Theories of Physics beyond the standard model predict the existence of new heavy Z bosons denoted Z'. As with photons and Z bosons, Z' bosons may be produced by a Drell-Yan mechanism at hadron colliders, where, at parton level, a same-flavour quark-antiquark pair $(q\bar{q})$ annihilate to produce a Z', which subsequently decays to a lepton and an antilepton $(l\bar{l}): q\bar{q} \to Z' \to l\bar{l}$.

Below we denote the colliding hadrons, incident from the +/-z-directions, as h_{\oplus} and h_{\ominus} respectively, labelling their corresponding momenta p_{\oplus} and p_{\ominus} . The fraction of h_{\oplus} 's momentum carried by the colliding quark/antiquark inside it is denoted η_{\oplus} in the hadronic centre-of-mass frame. Similarly, the fraction of h_{\ominus} 's momentum carried by the colliding antiquark/quark inside it is η_{\ominus} . The total hadronic centre-of-mass energy squared is denoted $S = (p_{\oplus} + p_{\ominus})^2$. The lepton and antilepton momenta are denoted p_l and $p_{\overline{l}}$ respectively.

(a) Using momentum conservation, $\eta_{\oplus}p_{\ominus} + \eta_{\ominus}p_{\ominus} = p_l + p_{\bar{l}}$, determine $m_{l\bar{l}}^2$ in terms of η_{\oplus} , η_{\ominus} , and S, where $m_{l\bar{l}}$ denotes the invariant mass of the lepton-antilepton system.

[3]

(b) Determine the rapidity of the lepton pair, $y_{l\bar{l}}$, in terms of η_{\oplus} and η_{\ominus} , in the hadronic centreof-mass frame.

[3]

[2]

- (c) Determine the momentum fractions η_{\oplus} and η_{\ominus} in terms of $m_{l\bar{l}}$, $y_{l\bar{l}}$ and S.
- (d) Compute the flux factor, F, in terms of $m_{l\bar{l}}$, where F is in general given by

$$F = 4\sqrt{\left(\left(\eta_{\oplus} p_{\oplus}\right) \cdot \left(\eta_{\ominus} p_{\ominus}\right)\right)^2 - \left(\eta_{\oplus} p_{\oplus}\right)^2 \left(\eta_{\ominus} p_{\ominus}\right)^2}.$$
[3]

(e) The two-body phase space factor for the final-state leptons is

$$d$$
LIPS = $\frac{1}{16\pi} d\cos\hat{\theta}$,

where $\hat{\theta}$ is the polar angle of the final-state lepton in the $q\bar{q}$ centre-of-mass frame. Given that the matrix element for $q\bar{q} \to Z' \to l\bar{l}$, summed over fermion spins, can be written in the form

$$\sum_{\text{spins}} |\mathcal{M}|^2 = 128\pi \, m_{l\bar{l}}^2 \, N_C^2 \, \left[\frac{3}{8} \left(1 + \cos^2 \hat{\theta} \right) \, \hat{\sigma}_T^{q\bar{q}} + \frac{1}{2} \cos \hat{\theta} \, \hat{\sigma}_{FB}^{q\bar{q}} \right]$$

where $N_C = 3$ is the number of colours in QCD, and $\hat{\sigma}_T^{q\bar{q}}$, $\hat{\sigma}_{FB}^{q\bar{q}}$ are constants depending only on the quark and lepton flavours, determine the total *partonic cross section*, $\hat{\sigma}^{q\bar{q}}$, in terms of these variables, integrated over all $\hat{\theta}$.

(f) Determine the total $h_{\oplus}(p_{\oplus}) + h_{\ominus}(p_{\ominus}) \rightarrow Z' \rightarrow l\bar{l}$ hadronic cross section, $\sigma_{h_{\oplus}h_{\ominus}\rightarrow Z'\rightarrow l\bar{l}}$, in the form of an integral over $y_{l\bar{l}}$ and $m_{l\bar{l}}$; you may use the relation $d\eta_{\oplus}d\eta_{\ominus} = \frac{1}{\bar{S}} dm_{l\bar{l}}^2 dy_{l\bar{l}}$.

[4]

6. Decay width of the top quark [20 marks]

Throughout the question you should assume that the b-quark mass is zero and CKM element $V_{tb} = 1$.

In the following we denote the t, b and W particle momenta respectively as p_t , p_b , p_W .

(a) Draw the Feynman diagram for the two-body decay of a top quark into a *b*-quark and a W^+ boson, labelling the external particles by their momenta p_t , p_b , p_W . Take care to label the flow of fermion number appropriately with an arrow.

[2]

(b) The amplitude for the top quark decay to a b-quark and $longitudinal W^+$ boson is

$$-i\mathcal{M}_{0} = \frac{-ig_{W}}{\sqrt{2}} \epsilon_{L}^{\mu}(p_{W}) j_{\mu}^{tb}, \qquad j_{\mu}^{tb} = \bar{u}(p_{b}) \gamma_{\mu} \frac{1}{2} (1 - \gamma_{5}) u(p_{t})$$

where g_W is the weak coupling constant. Show that the complex conjugate of the amplitude is given by (recall $\gamma^{\dagger}_{\mu} = \gamma_0 \gamma_{\mu} \gamma_0$)

$$i\mathcal{M}_{0}^{*} = \frac{ig_{W}}{\sqrt{2}} \epsilon_{L}^{\nu*}(p_{W}) \ j_{\nu}^{tb*}, \qquad j_{\nu}^{tb*} = \overline{u}(p_{t}) \gamma_{\nu} \frac{1}{2} (1 - \gamma_{5}) u(p_{b}) .$$
[4]

(c) Summing the amplitude squared over fermion spins (t and b) one obtains

$$\sum_{t,b \text{ spins}} \left| \mathcal{M}_0 \right|^2 = \frac{g_W^2}{2} \epsilon_L^{\mu} \left(p_W \right) \epsilon_L^{\nu *} \left(p_W \right) \operatorname{Tr} \left[\not p_b \gamma_{\mu} \not p_t \gamma_{\nu} \frac{1}{2} \left(1 - \gamma_5 \right) \right].$$

The longitudinal polarization vector $\epsilon^{\mu}_{L}(p_{W})$ of the W^{+} boson, can be written as

$$\epsilon_L^{\mu} \left(p_W \right) \ = \ \frac{1}{m_W} \left(p_W^{\mu} - \frac{m_W^2}{p_W \cdot p_b} \, p_b^{\mu} \right) \,.$$

Show that $\sum_{t,b \text{ spins}} |\mathcal{M}_0|^2$ can be reduced to

$$\sum_{t,b \text{ spins}} \left| \mathcal{M}_0 \right|^2 = \frac{1}{2} \frac{g_W^2}{m_W^2} \operatorname{Tr} \left[\not p_b \not p_W \not p_t \not p_W \frac{1}{2} \left(1 - \gamma_5 \right) \right].$$

[Hint: ignoring the mass of the *b*-quark $p_b p_b = p_b^2 = 0$].

(d) Using the identity

$$\operatorname{Tr}\left[\not p_b \not p_W \not p_t \not p_W \frac{1}{2} \left(1 - \gamma_5\right)\right] = 2p_b p_W m_t^2$$

compute $\sum_{t,b \text{ spins}} |\mathcal{M}_0|^2$ in terms of g_W , m_t and x, where $x \equiv m_W^2/m_t^2$.

(e) The squared matrix element summed over all fermion spins and gauge boson polarizations is

$$\sum_{\text{spins,pols}} |\mathcal{M}|^2 = \frac{1}{2} g_W^2 m_t^2 \frac{1}{x} \left[1 + x - 2x^2 \right]$$

Determine the branching fraction of top quark decays to longitudinally polarized W^+ bosons and *b*-quarks in the limit $m_t \gg m_W$.

[3]

[6]

[5]