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1 Problems With Short range Interactions

While in principle we now have a basis for quantizing scalar, fermionic and
vector fields, this only works in the most naive manner for the simple theory
QED with a U(1) symmetry. As already mentioned we have a problem with
the strong interaction because the particles are not the fundamental fields. We
will deal with this later.

There is also a problem with the weak interaction, which describes such
processes as

n→ p+ e− + ν̄e (1)

and
µ− → e− + ν̄e + νµ. (2)

The former also requires dealing with constituent particles, but the latter is an
example of an interaction involving fundamental fields.

Phenomenologically there are two intrinsic features of the weak interactions:

1. It is short range in nature, and hence cannot be described by massless vector
bosons.

2. It violates parity, i.e. it only involves the left-handed particle, e.g. it couples
to currents of the type

Jλ
l = ν̄eγ

λ(1− γ5)e

Jλ
h = ūγλ(1− γ5)d̃,

where we use d̃ since there is mixing in the quark sector.

We could try an interaction of the type

Lint = −GF√
2
J†
λJ

λ + hermitian conjugate, (3)
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where Jλ is the charged current and GF ∼ 10−5GeV−2 is the Fermi coupling
constant. However this type of interaction runs into two types of problem.

1. Perturbative unitarity. It is a fundamental rule of quantum field theory that

σtot ≤ k ln2(E), (4)

where E is the energy of the scattering process, and k is some constant. This
is known as the Froissart bound. However, at leading order using the proposed
current-current interaction we find

σ(νµe
− → µ−νe) =

G2
F s

π
, (5)

where s is the usual Mandelstam variable s = (p1+ p2)
2 which is equal to E2 in

the centre-of-mass frame. Hence, there is a perturbative violation of unitarity.
This is not a fundamental problem, it merely implies that perturbation theory
becomes useless at energies such that a finite order perturbative calculation
breaks the unitarity bound, and this may be true. However, there is another
more serious problem.

2. Renormalizability. If we look at a 6 particle scattering amplitude using the
current-current interaction we obtain.

∼ G3
F

∫ d4k

k3

We have an integral over the four-momentum from the closed loop, and each
of the fermion propagators behaves like 1/k in the limit that |k| → ∞. Hence,
the contribution to the integral from this region behaves like G3

F

∫ d4k
k3

. This is
clearly divergent, and in order to make sense of it we must impose an upper
cut-off Λ on the integral, which we usually interpret as the scale of new physics
where the theory must be modified. Doing this the integral then behaves like
ΛG3

F , i.e. it is divergent in Λ.
This problem of “ultraviolet” divergences is common to all realistic field

theories and requires the procedure known as renormalization. In this one re-
defines the parameter associated with the lowest order diagram, e.g. a coupling
or mass, as the “bare” parameter. This will then have Λ-dependence which
cancels that from the loop-correction, resulting in a finite total result. It is this
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total result which is directly related to a physical process, whereas the “bare”
parameter in the Lagrangian is not physically observable, but just a parameter
which appears in the calculation of processes. In a renormalizable theory, a
suitable Λ-dependent definition of a finite number of bare parameters (e.g. cou-
pling, electron mass, and electron and photon normalization in QED) results
in a theory with no ultraviolet divergences, and Λ may be taken to infinity.
Physically this means that the theory at scales far below some new physics may
be defined in terms of a finite number of parameters with no knowledge of the
new physics at higher scales being required.

In the theory with the current-current interaction this procedure does not
work. The simplest loop diagram for 6 particle scattering is divergent, and this
divergence can only be removed by the introduction of a new 6-point vertex
not present in the original proposal of the Lagrangian. This introduces a new
parameter into the theory. However, this new 6-point vertex means that the
1-loop 8-point diagram has divergences not removed by renormalization of the
parameters already present, and an 8-point vertex must be added to the La-
grangian to remove this divergence. This continues such that an infinite number
of parameters is needed to calculate all possible scattering processes, and the
theory is said to be non-renormalizable. This means that in order to make real
progress in calculations one must know what the new physics is which relates
this infinite number of parameters.

An alternative to the current-current interaction, i.e. the model for the new
physics at high scales, is to assume we have a very massive vector boson, i.e.
the free part of the Lagrangian in the boson sector is

LW = −1
2
(∂µW

†
ν − ∂νW

†
µ)(∂

µW ν − ∂νW µ) +M2
WW

†
µW

µ (6)

and there is an interaction term of the form

Lint = g(JµWµ + hermitian conjugate), (7)

This leads to a gauge boson propagator of the form

Dµν(k
2) = −igµν − kµkν/M

2
W

k2 −M2
W + iǫ

. (8)

If k2 ≪ M2
W then Dµν(k

2) → igµν/M
2
W . Therefore, in fermion-fermion scatter-

ing we obtain diagrams of the form
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g

g

W ∼ − g2

M2
W

= −GF√
2

and the four-fermion scattering looks like a current-current point interaction at
low energies.

Hence, this approach looks plausible. However, given that we invoked gauge
symmetry to get a sensible theory of vector bosons in the last section we have
to ask if we are allowed to simply add a term M2

WW
†
µW

µ to the Lagrangian,
since it clearly violates gauge symmetry.

It is actually allowed for the photon. Consider the Lagrangian

Lg = −1

4
F µνFµν +

1
2
M2

AA
µAµ. (9)

The equation of motion for this is

∂

∂xµ
∂L

∂(∂µAν)
=

∂L
∂Aν

(10)

which leads to
∂µF

µν +M2
AA

ν = 0. (11)

Differentiating again and using the asymmetry of F µν we automatically obtain
M2

A∂νA
ν = 0. Hence, ∂νA

ν = 0 and we can eliminate one degree of freedom.
In momentum space this becomes the condition pµǫµ = 0 on the polarization
vector. In the rest frame of the particle p = (mA, 0) so we must have ǫ = (0, ǫ)
and it is the timelike photon polarization which is eliminated by using the
equations of motion. This means that the field Aµ describes a particle with
three real degrees of freedom, and has the mode expansion

Aµ(x, t) =
∫

d3k

(2π)3
1

2Ek

∑

λ=1,2,3

[ǫµ(λ, k)a(λ, k)e
−ik·x + ǫ∗µ(λ, k)a

†(λ, k)eik·x] (12)

where the creation and annihilation operators satisfy

[a(λ, k′), ), a†(λ′, k)] = δλλ′2Ek(2π)
3δ3(k − k′). (13)

So in this case the theory is quantized correctly.
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We might worry about problems with renormalizability, since as k2 → ∞
the propagator Dµν(k

2) → i(k2/M2
A)/k

2 = i/M2
A rather than the 1/k2 usually

required for renormalizability from power counting. However, in fact there is
no problem. This is because this bad high-momentum behaviour only comes
from the part of the propagator of the form

kµkν/M
2
A

k2 −M2
A + iǫ

. (14)

The photon only couples to fermions via the term AµJµ, where Jµ = −eψ̄γµψ,
and Jµ is conserved, i.e. ∂µJµ = 0 or in momentum space kµJµ = 0. Therefore,
the above contribution to the propagator makes no contribution in any Feynman
diagram, and renormalizability can be maintained.

Therefore, there is NOTHING at all wrong with a massive U(1) gauge the-
ory, but the U(1) symmetry is needed for all but the mass term in order to
eliminate the timelike degrees of freedom and guarantee unitarity.

In order to obtain a charged current in the weak interaction and hence at
least two distinct gauge fields we need a non-Abelian symmetry. In a non-
Abelian theory we have more complicated couplings of the gauge field Wµ than

just that to the conserved fermionic current. In general the
kµkν/M2

A

k2−M2

A
+iǫ

part

of the unitarity inspired propagator does contribute, and renormalizability is
lost. A modification of the propagator to a more acceptable form as far as
renormalizability is concerned, e.g. −igµν/(k2 − M2

W + iǫ) leads to explicit
breaking of gauge symmetry and to the existence of negative norm timelike
modes. Therefore, non-Abelian massive gauge theories do not exist. ( The
equation of motion for the non-Abelian theory would be DµF

µν +M2
WW

ν = 0,
and does not lead to the elimination of the timelike mode in the same way as
for the photon.)

There is one possible way around the problem of how to give the non-Abelian
gauge boson a mass. Consider a general non-Abelian gauge theory quantum
gauge theory with bare propagator

D0
µν = −igµν − pµpν/p

2

p2 + iǫ
= −i P T

µν

p2 + iǫ
. (15)

This will receive quantum corrections of the form

+iΠ(p2)p2P T
αβ
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where the hatched oval represents any higher order correction, e.g. it could be
a closed loop of fermions. We only need consider the transverse part since the
longitudinal part will give zero when contracted with P T

µν . Under this correction

D0
µν → D0

µν − iΠ(p2)
gµν − pµpν/p

2

p2 + iǫ
= D0

µν(1 + Π(p2)). (16)

There will be an infinite number of such bubble corrections, forming a geometric
series.

Dµν = + + + · · ·

We may sum this series ( a so-called Dyson resummation) obtaining

Dµν = D0
µν

1

1−Π(p2)
. (17)

In usual circumstances Π(p2) = A + Bp2 +O(p4), and all it leads to is a finite
wavefunction renormalization (i.e. an alteration of the residue at the pole at
p2 = 0). However, if the gauge boson is able to couple to a massless scalar
particle as below

gv gv

i/p2

then we can obtain Π(p2) ∼ g2v2/p2. in this case

D0
µν → −i gµν − pµpν/p

2

p2(1− g2v2/p2)
= −igµν − pµpν/p

2

p2 − g2v2 + iǫ
, (18)

and the gauge boson acquires a mass.
From this admittedly rather heuristic example above we see that a massive

vector boson can be obtained from the interaction with an exactly massless
scalar particle. But massless scalars are unnatural. The mass of a scalar field
is completely arbitrary and hence we need some explanation of why we should
have exactly massless scalars to provide our non-Abelian gauge bosons with
mass, as well as a precisely formulated mechanism for the way in which they
do so. Fortunately both are provided by the process known as spontaneous
symmetry breaking.
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2 Spontaneous Symmetry Breaking

Spontaneous symmetry breaking occurs when the physics theory under question
has some underlying symmetry, but the ground state is degenerate and a par-
ticular choice of ground state or vacuum does not respect this symmetry of the
Lagrangian or Hamiltonian. In classical physics, there are many instances when
the ground state is not unique. For example, in a ferromagnetic material, the
interactions between neighbouring atomic spins depends only on their relative
orientation. The lowest energy state of the material corresponds to all spins
aligned in the same direction. There are an infinite number of possible direc-
tions for this alignment. Generally the material (or at least domains within it)
picks a particular direction which, of course, breaks the rotational symmetry.

In quantum field theory the same phenomena can occur when the vacuum
state is not unique. To uncover the particle content and kinds of particle in-
teraction in a quantum field theory, one constructs a Fock space by expanding
fields about their vacuum values. This involves choosing a vacuum state, in
which fields take a definite value, that minimizes the energy. In general the
vacuum state chosen is not invariant under all the symmetries of the original
Lagrangian. Neither will the interactions of particle states obtained by expand-
ing fields around particular vacuum values be invariant under these symmetries.
This is called spontaneous symmetry breaking and it plays a fundamental role
in the Standard Model. However, we will discuss the process in stages, build-
ing up to the ultimate result of massive vector bosons in non-Abelian gauge
theories.

2.1 Discrete Symmetries

To illustrate this in field theory, we first consider the simplest case of a La-
grangian density for a single real scalar field φ,

L = 1
2
∂µφ ∂µφ− V (φ) , (19)

which is invariant under the Z2 symmetry (corresponding to the group with
elements {1,−1} under multiplication),

φ ↔ −φ . (20)

The assumption of symmetry under (20) requires

V (φ) = V (−φ) , (21)

and as a typical field theory example we may take

V (φ) = 1
2
m2φ2 + 1

4!
gφ4 , g > 0 , (22)

with the condition on the coupling g necessary to ensure that V (φ) is bounded
below. For m2 > 0, classically the minimum of V uniquely occurs at φ0 = 0,
which is invariant under (20).
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However a different picture emerges if m2 < 0. In this case by addition of a
constant we might rewrite V (φ) in the form

V (φ) = 1
4!
g(φ2 − v2)2 , (23)

which has the form the form of a double well, shown below, and is designed so
that V (φ0) = 0.

Double well potential

In the ground state, which minimizes energy, there are now two possibilities
classically, φ0 = ±v, and in the quantum field theory there are expected to be
two vacua |0±〉 such that

〈0±|φ(x)|0±〉 = ±vR , (24)

with vR some renormalised value, including quantum corrections, of the constant
v. For the two vacua it is possible to construct two independent Hilbert spaces
of states H± by the application of field operators to |0±〉.

To identify the particle content and set up a perturbative expansion for this
theory it is necessary to choose a particular vacuum value for the field. Let us
shift the field

φ = v + f , (25)

so that the Lagrangian density defined by (19) and (23) becomes

L = 1
2
∂µf∂µf − 1

6
g(v2f 2 + vf 3 + 1

4
f 4) . (26)

Given that v is just a fixed number, f then describes a massive scalar field,
of mass squared gv2/3, with further cubic and quartic interactions. However,
these two interactions do not depend on independent free parameters and will
still be related in a simple manner after renormalization.

Classically, or in quantum perturbation theory to lowest order, 〈0|f |0〉 = 0.
(There are quantum corrections to this result which will make it non zero from
Feynman diagrams with one external line. One must then shift f by quantum
corrections in order to maintain zero VEV (vacuum expectation value)). The
Fourier modes of f then have the interpretation of creation and annihilation op-
erators for massive scalar particles. However, the field theory of the scalar f has
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no Z2 symmetry f → −f , though it will be described by just two renormalized
parameters vR and gR.

It is interesting to note that the scenario just described is valid in quantum
field theory but it fails in ordinary quantum mechanics. This is because for a
similar potential in quantum mechanics there will be tunnelling between the two
vacua which connects them and which will result in the true lowest energy states
being two superpositions of the two naive vacuum states which would be parity
eigenstates with parity ±. In quantum field theory, one is essentially dealing
with a quantum mechanics problem at each point in space, with x replaced by
φ(x). Tunnelling between the two ground states requires tunnelling at every
point in space. If we neglect the coupling between φ(x) at different points, the
total amplitude is given by

〈0−|0+〉 ∼ e−CN . (27)

where N is the number of points in space and e−C < 1 is the quantum mechanics
result. If space is a continuum, obviously this amplitude is zero.

The above description of spontaneous symmetry breakdown for Z2 general-
izes straightforwardly to any discrete symmetry group of order N , but spon-
taneous symmetry breaking is more interesting when we consider continuous
symmetries.

2.2 Continuous Symmetries

We may also consider a continuous symmetry group which may undergo spon-
taneous symmetry breakdown. As a simple illustration we first consider an
n component scalar field theory with real fields φ = (φ1, . . . , φn). Defining
φ2 ≡ φ·φ =

∑

r φrφr we postulate a Lagrangian density.

L = 1
2
∂µφ·∂µφ− V (φ) , V (φ) = 1

8
g(φ2 − v2)2 , g > 0 . (28)

For n = 2 the potential has the form shown,

This Lagrangian is clearly invariant under the symmetry group O(n) which
rotates the n-vector φ. It is also evident that the classical ground state corre-
sponding to the minimum of the potential in (28) is given by φ = φ0 for any φ0
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such that
φ0

2 = v2 . (29)

This defines an n− 1 dimensional sphere, Sn−1 (for n = 2 the classical ground
states lie on a circle). At any point on the Sn−1 defined by (29) there are
‘flat’ directions along which the potential energy remains unchanged. This has
important physical consequences.

We can see this explicitly by expanding φ about a particular point on Sn−1,
for example

φ0 = (0, . . . , 0, v) , (30)

so that
φ = (φ⊥, v + f) , φ⊥ = (φ1, . . . , φn−1) . (31)

The potential now becomes

V (φ) = 1
2
gv2f 2 + 1

2
gv (φ⊥

2 + f 2)f + 1
8
g (φ⊥

2 + f 2)2 . (32)

There is a quadratic term for the field f , but the n − 1 fields φ⊥ have no
quadratic contribution so that the frequencies of these modes for small fluctua-
tions around φ0 are zero. The quadratic terms in a Lagrangian, after any linear
terms have been removed by shifting the fields, determine the particle masses
in the associated quantum field theory, so that in this example there are n− 1
massless fields after spontaneous symmetry breakdown (choice of a particular
vacuum (30)) and one massive field f . The fields which are massless are called
Goldstone modes. The symmetry group O(n) for this situation is then reduced
to an O(n − 1) symmetry that leaves the vacuum φ0 invariant. The O(n − 1)
group acts only on the first n − 1 components φ⊥ of φ and thus remains a
symmetry of (32).

A more general discussion of spontaneous symmetry breakdown can be de-
veloped which is applicable to any field theory in which the Lagrangian is in-
variant under a continuous symmetry group G but the ground state is invariant
under a subgroup H . We assume a Lagrangian density with a multi-component
scalar field φ and where the potential V is assumed to be invariant so that,

V (U(g)φ) = V (φ) for all g ∈ G . (33)

Classically spontaneous symmetry breakdown arises when the ground state is
not a single point invariant under G, but is a non trivial manifold,

Φ0 = {φ0 : V (φ0) = Vmin} . (34)

For any point φ0 ∈ Φ0 we may define its stability group H ⊂ G by

U(h)φ0 = φ0 for all h ∈ H . (35)
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2.3 Goldstone’s Theorem - Classical

The Goldstone theorem states that, in a quantum field theory when spontaneous
symmetry breakdown of a continuous symmetry occurs, there are zero mass
particles, Goldstone bosons, whose numbers are determined by the dimensions
of G and H .

At the classical level this amounts to counting the number of zero frequency
modes for small oscillations around the classical ground state. We prove the
result for real scalar field theory of a scalar with components φr. To demonstrate
the result we first recast (33) in infinitesimal form,

V (φ+ δφ) = V (φ) for δφ = iTaχaφ , a = 1, . . .dimG , (36)

where Ta are the dimG generators of the Lie algebra of G in the representation
defined by φ and χa are some infinitesimal parameters. We use a summation
convention for any repeated indices. The generators are hermitian.

(36) can obviously be rewritten as

δ

δφr
V (φ) (Taφ)r = 0 . (37)

The frequencies of the oscillations of the field around the ground state are
determined by the eigenvalues of the matrix formed by the second derivatives
of V evaluated at the minimum. Choosing an arbitrary point φ0 ∈ Φ0 this ‘mass
matrix’ is then defined by

Msr =
δ2

δφsδφr

V (φ)
∣

∣

∣

∣

φ=φ0

. (38)

Now from (37) we have at φ = φ0.

δ2

δφsδφr
V (φ) (Taφ)r +

δ

δφr
V (φ) (Ta)rs = 0 , (39)

and since at a minimum the first derivatives of V must be zero we have

Msr(Taφ0)r = 0 . (40)

Thus Taφ0 is a zero frequency eigenvector for the matrix M.
To count the number of such zero eigenvectors we first note that if ti is a

generator of the Lie algebra of H , which is the stability group at φ0 ∈ Φ0, then

tiφ0 = 0 , i = 1, . . .dimH . (41)

If G is compact and semi-simple (as is the case for internal symmetry groups of
interest in particle physics) we may choose a basis for the Lie algebra such that

Ta = (ti, Tâ) , (42)
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with Tâ orthogonal to ti, which corresponds to tr(tiTâ) = 0. With this result, it
is clear from (40) and (41) that there are dimG− dimH linearly independent
eigenvectors Tâφ0 with zero eigenvalues for the matrix M.

If we apply this counting to the example given with G = O(n), H = O(n−1)
then

dimO(n)− dimO(n− 1) = 1
2
n(n− 1)− 1

2
(n− 1)(n− 2) = n− 1 , (43)

which is the correct number of Goldstone modes in this case. The groupH is the
manifest unbroken symmetry group of the theory after spontaneous symmetry
breakdown.

3 Higgs Mechanism

3.1 Abelian

When spontaneous symmetry breaking occurs in gauge field theory, Goldstone
modes can be absorbed into the definition of a massive vector field, as we
have already demonstrated in an approximate fashion. This is usually called
the Higgs effect or Higgs mechanism. It can maintain the renormalizability
and unitarity achieved for a vector theory with exact gauge invariance while
introducing the mass.

The reinterpretation of a massless Goldstone boson as the conversion of a
massless vector theory (2 degrees of freedom) to a massive vector theory (3 de-
grees of freedom) relies intrinsically on the local nature of the gauge symmetry.
Considering a particle as a localized disturbance in a field, a global transfor-
mation of the field by definition cannot remove this disturbance. However, for
a local transformation one may match the transformation function χ(x) to the
local field disturbance so as to cancel it out. Since it is a symmetry transfor-
mation, the particle that corresponded to that local disturbance in the field is
not a physical degree of freedom.

We have already seen something similar in QED where there is a vector pho-
ton Aµ which apparently has four components and where the process of choosing
a particular gauge transformation function χ(x) to eliminate two unphysical de-
grees of freedom is called gauge fixing. This can be done by specifying χ(x),
but is is more usual to put some condition on the fields, such as Lorentz gauge
condition ∂µA

µ = 0.
In a spontaneously broken gauge theory the choice of which is the true vac-

uum is equivalent to a choice of gauge. The Goldstone bosons then correspond
to transformations into the other degenerate vacuum states, and are transitions
into states not consistent with the original gauge choice. This shows that the
Goldstone bosons are unphysical and are often called “Goldstone ghosts”. We
first illustrate this for a U(1) gauge theory with a complex scalar field and then
analyse the general case for a non-Abelian gauge theory.
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We start with the Lagrangian density

L = −1
4
F µνFµν + (Dµφ)∗Dµφ− V (φ∗φ) , (44)

where
Fµν = ∂µAν − ∂νAµ , Dµφ = ∂µφ+ ieAµφ . (45)

This is invariant under local U(1) gauge transformations where

Aµ → Aµ −
1

e
∂µχ , φ → eiχφ , (46)

for arbitrary space-time dependent χ(x). The covariant derivative is constructed
so that under (46), Dµφ → eiχDµφ, so that gauge invariance of (44) is trivially
evident.

For the theory described by the Lagrangian (44), there are two phases with
very different physics for which the natural physical variables are completely
different.

1. The minimum of V (φ∗φ) occurs at φ∗φ = 0; for instance

V (φ∗φ) = 1
2
m2φ∗φ+ 1

2
g(φ∗φ)2 , m2, g > 0 . (47)

In this case, in the classical theory the ground state is φ0 = 0 and in the
quantum theory we expect a unique vacuum state |0〉. The gauge field couples
to a conserved current jµ whose corresponding charge Q =

∫

d3x j0 is conserved,
generating a U(1) symmetry with Q|0〉 = 0. In a perturbative expansion, the
theory describes spinless charged particles, with to lowest order a mass m and
charges ±e, interacting with massless photons. The physical degrees of freedom
are then 2 for the field Aµ, corresponding to the two photon polarization states
after removal of gauge degrees of freedom, and 2 for the field φ, corresponding
to the two charge states.

2. The minimum of V (φ∗φ) occurs away from the origin at φ∗
0φ0 = 1

2
v2; for

instance we might take

V (φ∗φ) = 1
2
g(φ∗φ− 1

2
v2)2 . (48)

In this case the U(1) gauge symmetry is broken by a specific choice of the ground
state. To derive the physical consequences in this situation, it is convenient to
rewrite the fields if φ 6= 0 in the form

Aµ = Bµ −
1

e
∂µθ/v , φ =

1√
2
(v + f)eiθ/v , (49)

with f, θ real. It is sensible to write the scalar field in this form because ex-
panding about the vacuum we obtain

φ =
1√
2
(v + f + iθ + · · ·), (50)

13



i.e. f and θ represent the excitations about the vacuum. If the vacuum ex-
pectation value were zero writing φ = 1√

2
feiθ/µ would result in only 1√

2
f plus

interaction terms between f and θ - θ would not be an excitation about the
vacuum in this case, and hence not a mass eigenstate. Under the action of
gauge transformations in (46) it is easy to see that

θ/v → θ/v + χ , (51)

while Bµ, f are gauge invariant. Using

Dµφ =
1√
2
eiθ/v

(

∂µf − ieBµ(v + f)
)

, (52)

we may rewrite the Lagrangian in (44) in the form

L = −1
4
F µνFµν +

1
2
e2(v + f)2BµBµ +

1
2
∂µf ∂µf − 1

8
g(2vf + f 2)2 . (53)

For small fluctuations around the ground state given by f, Bµ = 0 we may
restrict this to just the quadratic terms giving

Lquadratic = −1
4
F µνFµν +

1
2
e2v2BµBµ +

1
2
∂µf ∂µf − 1

2
gv2f 2 , (54)

which results in the “free” equations of motion,

∂µFµν + e2v2Bν = 0 ⇒
{

∂νBν = 0
(∂2 + e2v2)Bν = 0

, (∂2 + gv2)f = 0 . (55)

Thus Bµ represents a massive vector field describing spin 1 particles with mass
MB, MB

2 = e2v2 at lowest order, which has therefore 3 degrees of freedom
(JZ = −1, 0,+1), while the field f describes spinless particles of massmf , mf

2 =
gv2. Unlike the case of spontaneous symmetry breakdown of a purely global
continuous symmetry, there are no massless modes. In a sense, the photon
absorbs the Goldstone boson so as to ensure it has the right degrees of freedom
to give a massive spin 1 particle. It was possible to rewrite the theory just in
terms of gauge invariant variables, so that θ disappeared from the Lagrangian
in (53). The field θ(x) is the ‘would-be’ Goldstone field in this case, but by a
suitable gauge transformation as in (51) we could transform it to zero; this is
known as unitary gauge choice. Equivalently, we could impose a gauge condition
on the fields

φ = φ∗ , (56)

which makes φ real and hence θ = 0. The degree of freedom corresponding to θ
is not lost however, since in the unitary gauge the field Bµ becomes a massive
3-component field. There are four physical degrees of freedom before and after
spontaneous symmetry breakdown.

The interaction part of the Lagrangian is

Lint =
e2

2
BµBµf

2 + eMBB
µBµf − g

8
f 4 − 1

2
mf

√
gf 3 (57)

leading to the vertices below. Note that while there are four of these, once we
know the masses, they are described in terms of only two parameters, e and g,
reflecting the memory retained of the original symmetry.
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µ

ν

ie2gµν
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µ

ν
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−ig
2

−imf
√
g

8

3.2 Renormalizability and Unitarity

The propagator for the massive vector boson field is now

Dµν(k
2) = −i

(

gµν −
kµkν
M2

B

)

1

k2 −M2
B + iǫ

. (58)

This behaves like k2/(k2M2
B) → 1/M2

B as k2 → ∞, rather than 1/k2 usually
required for renormalizability. Hence we have lost manifest renormalizability.
(Note that we previously discovered that a propagator of the form (58) was
acceptable in an Abelian gauge theory, though not in a non-Abelian theory.
However, with the spontaneous symmetry breaking it is no longer obvious that
Bµ couples only to a conserved current, and even manifest U(1) renormalizabil-
ity has been lost.)

Hence, it is unclear whether we have really gained anything. The answer
to this is yes because the underlying symmetry is preserved. To see this we
construct the theory in a slightly different manner. This time we let the scalar
field be

φ =
1√
2
(v + f + iϕ), (59)

where f and ϕ both have zero vacuum expectation value. Now we find that

(Dµφ)∗Dµφ → 1
2
∂µf ∂µf + 1

2
∂µϕ∂µϕ+ 1

2
e2v2AµAµ + evAµ∂µϕ

−eAµ(ϕ∂µf − f∂µϕ) + e2vfAµAµ +
1
2
AµAµ(f

2 + ϕ2). (60)

This contains terms we saw for f and the vector field before, but also terms in
ϕ, particularly the bilinear term evAµ∂µϕ, which under integration by parts →
−MAϕ∂µA

µ, defining MA = ev. This interaction mixes the ϕ and Aµ fields (in
particular the longitudinal component), making the mass eigenstates unclear.

We can eliminate this bilinear term by gauge fixing. We introduce the gauge
fixing term

Lgf = − 1

2ξ
(∂µA

µ − ξMAϕ)
2 (61)

to the Lagrangian, which is similar to the usual covariant gauge fixing. Multi-
plying out (61) we obtain a term MAϕ∂µA

µ which cancels the previous mixing
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term and results in a propagator for the gauge boson

Dµν(k
2) = −i

(

gµν − (1− ξ)
kµkν

k2 − ξM2
A

)

1

k2 −M2
A + iǫ

, (62)

which now has the physical pole and an additional unphysical ξ-dependent pole.
The scalar field ϕ also has the propagator

−i 1

p2 − ξM2
A

, (63)

and has an unphysical pole at the same place as the gauge field.
In the limit ξ → ±∞ the Goldstone boson mass becomes infinite and it

decouples from the theory. In this limit the gauge boson propagator

→ −i
(

gµν −
kµkν
M2

A

)

1

k2 −M2
A + iǫ

. (64)

In this limit we regain the manifestly unitary theory of the last section. However,
if, e.g. ξ = 1, known as the Feynman gauge,

Dµν(k
2) = −i gµν

k2 −M2
A + iǫ

, Dϕ(p
2) = −i 1

p2 −M2
A

, (65)

and we have manifest renormalizability (this is true for any finite ξ – the Landau
gauge ξ = 0 is more physical), but an unphysical vector field and a Goldstone
ghost, both of which have interaction vertices. However, the result of any
calculation for a physical process is independent of ξ, and we can prove unitarity
in the unitary gauge and renormalizability in a renormalizable gauge (finite
ξ). Usually one uses the unitary gauge at tree-level to get rid of unwanted
unphysical particles, but uses the renormalizable gauge in loop calculations in
order to have the more conventional form of the propagator.

3.3 Non-Abelian

For the gauge theory corresponding to local symmetry G the gauge field La-
grangian density is

Lgauge = −1
4
F µν .Fµν . (66)

If the symmetry G is not spontaneously broken, since (66) contains no mass
terms Aµ

aAµa, there are dimG massless vector particles in the theory, general-
izations of the photon. We will now see that the Higgs mechanism just discussed
generalizes to the non Abelian case.

The scalar contribution to the Lagrangian density is

Lφ = 1
2
(Dµφ)†·Dµφ− V (φ†φ) , (67)

where the covariant derivative is

Dµφ = ∂µφ+ ig AµaTaφ . (68)

16



We assume that the potential determines a ground state corresponding to spon-
taneous symmetry breakdown of the group G, i.e. the minimum of the potential
occurs for non zero φ0 ∈ Φ0 as before. With the gauge group G reduced at
any point on Φ0 to invariance under a subgroup H we first need to consider
dimG− dimH gauge conditions which maintain local gauge invariance for H .
In the unitary gauge we restrict the scalar fields φ by making them satisfy,

φ†Taφ0 − φ†
0Taφ = 0. (69)

As in (42), the generators and gauge fields can be decomposed into those be-
longing to the Lie algebra of H and those which are orthogonal,

Ta = (ti, Tâ) , Aµa = (Aµi, Aµâ) . (70)

Since, for ti the generators of H ,

tiφ0 = 0 , (71)

and ti is hermitian, (69) is automatically satisfied for these generators and we
may restrict (69) to just φ†Tâφ0 − φ†

0Tâφ = 0. Any φ can be arranged to satisfy
(69) by applying a suitable gauge transformation φ → Uφ. Then we may
generally write

φ = U−1(φ0 + f) , f †Tâφ0 − φ†
0Tâf = 0 , (72)

Aµ
âTâ = U−1Bµ

âTâU +
i

g
(∂µU−1)U (73)

U = exp (iηâ(x)/v Tâ) , (74)

where v is the mass scale of symmetry breaking. The fields ηâ(x) are the (dimG−
dimH) would-be Goldstone modes.

The unitary gauge choice corresponds to making a gauge transformation U
that precisely matches the space-time variation of these fields:

Aµ
â → Bµ

â

φ → (φ0 + f) (75)

A
µ
i → A

µ
i

It is clear from (72) and the hermiticity of Ta that the new φ satisfies (69). Note
that one is still free to make H gauge transformations.

With this decomposition and (72) the covariant derivative defined in (68)
reduces to

Dµφ = ∆µf + ig BµâTâ(φ0 + f) , ∆µf = ∂µf + igAµitif , (76)

where ∆µf is the H covariant derivative and Aµ the corresponding gauge field.
In (Dµφ)†·Dµφ there are terms of the form

ig[∂µf †BµâTâφ0 − φ†
0TâBµâ∂

µf ] (77)
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which are defined to be zero from the form of the gauge fixing. Hence, this
gauge fixing removes the bilinear terms which couple f and Bµâ. This means
the Lagrangian in (67) is now

Lφ = 1
2
(∆µf)†·∆µf + 1

2
g2Bµ

âBµb̂ (Tâ(φ0 + f))†·(Tb̂(φ0 + f))

+ [ig(∆µf)†Bµâ (Tâf) + g2Aµif
†tiBµâ (Tâ(φ0)) + herm. conj.]

−V ((φ0 + f)†(φ0 + f)) . (78)

Although the complete theory is described by L = Lgauge +Lφ, the physical
particle states can be identified from the quadratic terms only

Lquadratic = −1
4
(ti∂µAνi − ti∂νAµi)(ti∂

µAν
i − ti∂

µAν
i )

−1
4
(Tâ∂µBνâ − Tâ∂νBµâ)(Tâ∂

µBν
â − Tâ∂

νBµ
â )

+1
2
∂µf † · ∂µf − 1

2
f †·(Mf) + 1

2
Mâb̂B

µ
âBµb̂ , (79)

with the matrix M defined as in (38) and

Mâb̂ = g2(φ†
0Tâ) · (Tb̂φ0) . (80)

Thus, M has dimG− dimH positive eigenvalues, which are the masses squared
of the vector bosons Bµ

â . There are dimH massless vector particles Aµ
i , each of

which requires gauge-fixing, and scalar ‘Higgs particles’ f , which by virtue of
(72) are orthogonal to zero eigenvalue eigenvectors Tâφ0 of M. It is important
to note that the number of Higgs particles in f depends upon the dimension of
the representation chosen for φ.

The renormalizable gauge can be defined in the case of the non-Abelian
theory in an exactly analogous manner to the Abelian theory. Hence, both
renormalizability and unitarity can be proven for massive non-Abelian gauge
theories which acquire their masses via spontaneous symmetry breaking and the
Higgs mechanism. This now allows us to proceed with defining the electroweak
sector of the Standard Model.
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