Searches for New Physics in **Topologies Containing Beyond-Two-Generations** Quarks at CMS Prof. Freya Blekman Inter-university Institute for High Energies (IIHE) Vrije Universiteit Brussel

Top-Like Beyond-the-Standardmodel physics at CMS

Prof. Freya Blekman Inter-university Institute for High Energies (IIHE) Vrije Universiteit Brussel

- Gives interesting insight in how collaborations work in practice
- ATLAS has found different solution to same problem

The top quark

- First evidence 1994, CDF
- Discovery by D0 and CDF in 1995
- Heaviest known fundamental particle, $m_t \approx 173 \text{ GeV/c}^2$
- Lifetime $\sim 5 \times 10^{-25}$ s \rightarrow no hadronization before decay

History of the top quark

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

History of the top quark

Top pair production at the LHC

• Pair production in 8 TeV pp collisions:

Single Top production

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

Top quark – special?

- Many models predict that top is special in order to explain large mass
- Or top quark has special role because of its large mass

A_{FB} – portal to new physics?

- CDF and D0 measure values not consistent with Standard Model
- In multiple decay channels and across multiple experiments
 - Compelling to explain as new physics

17 SM parameters do not constrain creativity

- SUSY in all it's variations
 - GMSB
 - MSSM, CMSSM etc
- New strong interactions?
 - Technicolor; excited quarks; compositeness; new "contact" interactions
- Exotica:
 - Weird stuff: leptoquarks?
 - New "forces"?
 - New resonances (W-Z-like)
 - More generations?
 - Fourth generation (b'/t')
 - Gravity descending at the TeV scale?
 - New resonances; missing stuff; black holes; SUSY-like signatures [Universal Extra dimensions]
- SUSY-inspired exotica:
 - Long-lived massive (new) particles?
- Some true inspirations: "hidden valleys"?

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

Little Hierarchy problem, Naturalness

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

Little Hierarchy problem, Naturalness

Little Hierarchy problem, Naturalness

X

LHC: search engine

"Physics beyond the standard model" -MSSM Google Search I'm Feeling Lucky

Advanced Search Preferences Language Tools

Make your homepage beautiful with art by leading designers

Advertising Programs - Business Solutions - About Google

©2008 - Privacy

MSSM vs SUSY

LHC performance

CMS Integrated Luminosity, pp

- The LHC and CMS: outstanding performance during LHC Run I
- Detector performance

Compact Muon Solenoid

CMS detector performance

	CMS Subsystem	CSC	RPC	DT	HCAL Outer	HCAL forw.	HCAL end.	HCAL barrel	HCAL	Presho wer	ECAL end.	ECAL barrel	ECAL	Strips	Pixels
	% operational Feb 2013	97.2	97.4	98.5	96.9	99.9	99.9	99.4	99	96.8	98.4	99.1	99	97.5	96.3

LHC 2012 run: Pile-Up

- Outstanding LHC performance comes at a price:
- 2011:
 - Run A: 5 PU
 - Run B: 8 PU
- 2012:
 - Average: 21 PU

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV 50 50 (0.04) <u> = 21 40 Secorded Luminosity (pb^{-1} 30 30 20 20 10 10 8 10 15 20 25 5 30 35 00

Mean number of interactions per crossing

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

Particle flow

Particle flow in practice

- PF combines information from all subdetectors in a global event description
 - reconstruct 'particles' such as charged/neutral hadrons, photons, muons, electrons
 - These particles are used to construct composite objects such as jets, taus, missing transverse energy
 - Reject tracks from non-leading collisions before creating composite objects
 - And make assumptions for background from neutral particles
- Widely used in CMS, LHCb
 - CMS: big improvements in energy resolution jets, MET, tau identification,

leptons

to achieve this stability

lets

- For most analyses, CMS uses anti-k_T jets with a distance parameter of 0.5
- Particle flow algorithm allows very good agreement between data and MC with small jet energy scale uncertainties

Missing ET

- Particle flow extremely powerful approach for missing ET reconstruction
- Missing ET sensitivity to PU irreducible
 - But well reproduced in MC

Jets with b-tagging

Vrije Universiteit Brussel

- Long lifetime of b-hadrons in b-jets
 - $\tau = 1.512 \times 10^{-12} \text{ s}$
 - cτ = 455.4 μm
- Combination of lifetime information in MVA
- Efficiency measured in top and QCD events (data) using multiple methods

CCMS, and a series of the seri

On the momentum of top quarks

- Once boost of top quarks high enough
- Decay products become collimated
 - W->qq in one jet
 - Or t->bqq in one jet
- Special reconstruction algorithms needed:
 - Cambridge-Aachen algorithm with distance parameter 0.8

Jets with substructure

Jets with substructure

Validation in lepton+jets events

- Algorithm validated using muon+jets selection
- Data shows that W boson and top quark (using di-jet events) can be reconstructed this way and is reasonably well modeled

Top pair production Production cross section overview

LHC: Top quark pair factory

- Cross sections ~225 pb
- In combination with 20 /fb datasets:
 - LHC is a top factory

 Very productive program of Standard Model precision top physics

Top physics: rare decays

Next: undiscovered ttbar+X final states

Heavy resonances decaying to top quark pairs

Investigating ttbar invariant mass distribution

- Differential cross sections now available for 8 TeV sub-set
- Searches in tails of distributions ongoing for 8 TeV full sample

CMS Preliminary, 12.1 fb⁻¹ at $\sqrt{s} = 8$ TeV

Expect results very soon

- Z' scenarios interwoven with natural EXO solutions and A_{FB}explaining models
- M_{ttbar} distribution sensitive to many new physics scenarios

analysis strategy

- Searches in different top decay channels
 - Dileptons $t\overline{t} \rightarrow \ell^- \ell^+ v \overline{v} b \overline{b}$
 - Semileptonic = lepton+jets $t\overline{t} \rightarrow \ell \nu q\overline{q}b\overline{b}$
 - Hadronic = alljets $t\overline{t} \rightarrow q\overline{q}q\overline{q}b\overline{b}$
- And in different regimes
 - Close to 2x(top mass) threshold
 - Sensitive to shape of SM M(ttbar) distribution
 - Conventional top physics techniques may be used
 - More boosted
 - Sensitive to more massive M(ttbar) BSM physics
 - Dedicated reconstruction techniques may be necessary

Semileptonic, threshold

- Require only one lepton, >= 4 jets and split in b-tag multiplicity
- χ^2 sorting used to select best jet combination
- Using data-driven estimates for falling distribution of top pair mass spectrum above 500 GeV/c²
- Systematic uncertainties take into account rate and shape changes for signal and background model

Semileptonic, threshold

- Fit to falling distribution in electron/muon final states used to set limits (1 and ≥2 b-tag regions fit simultaneously)
 - Fully data-driven method, only makes assumptions on resonant shape of signal

Semileptonic, non-isolated

- Alternate analysis: Loosened lepton isolation criteria allow jet/lepton overlap
- Focus on mass tail: require harder cuts on leptons and jets
- Only at least 2 jets+lepton required
- χ^2 sorting used to select best jet combination
- Simultaneous template fit to M(ttbar) in different b-tag multiplicities and electron/ muon final states used to set limits
- Backgrounds normalized to control region where SM ttbar is dominant

src: CMS PAS B2G-12-006 Vrije Universiteit Brussel

Semileptonic, non-isolated

- Using boosted objects and jet - Full merged topology
 - Full merged topology
- Cambridge-Aachen jets
 - 'top jets'

Type 1 + Type 1

Jet 1

– 'W boson jets'

- Using boosted objects and jet pruning to identify substructure
 - Full merged topology
- Cambridge-Aachen jets
 - 'top jets'

Type 1 + Type 1

– 'W boson jets'

 LLH fit to bumps in mass spectrum used to set limits

Vrije Universiteit Brussel

CMS

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

- LLH fit to bumps in mass spectrum used to set limits
- 95% CL upper limits on increased cross section at high mass:

$$\sigma_{\rm NP+SM}$$
 < 1.2 $\sigma_{\rm SM}$ for masses above 1 TeV

B2G-13-001, Phys. Rev. Lett. 111, 211804

Vrije Universiteit Brussel

3000

Combined limits

• Combining results gives more sensitivity in high mass regime

B2G-13-001, Phys. Rev. Lett. 111, 211804

47

Heavy top partners

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

Fourth Generation

 Fourth generation one of more compelling SM extensions

new form of

Vrije Universiteit Brussel

 Direct and indirect limits on simplest SM4: excluded!

matter.

gauge symmetry,

- More elaborate fourth generation models still alive
 - Any SM extension with a Higgs doublet and fourth generation
 - Any models predicting other heavy top partners such as 2HDM
 - Vector-like quarks that are top quark/b quark partners
 - Exotic top partners with with different charge

upling.

+2/3e

-1/3e

Vector like quarks

- Non- SM fourth generation very hot topic
 - Can enhance CP violation
 - Heavy neutrino as DM candidate
- Vector-like fermions (nonchiral fermions):
 - Not excluded by Higgs cross sections
 - Little Higgs models Nucl.Phys.Proc.Suppl.117 (2003)40
 - Warped extra dimensions Phys.Rev.Lett.83:3370-3373,1999

- Models benchmark for new physics decaying toplike:
 - Extremely rich
 phenomenology with final
 states with multiple gauge
 bosons, b and t quarks:
 - T->bW,tZ, th
 - B->tW,bZ,bh
 - Current searches mostly pair production
 - Single production also possible

Vector-like quarks:

Combined t' search in I+jets and multileptons

- Require one isolated lepton pT> 32 GeV
- And at least 3 jets plus:
 - Fourth jet
 - W-tagged CA8 jet in first
 3 jets
- L+jets analysis employs Boosted Decision Tree to reach maximum sensitivity

src: B2G-12-015, JHEP 06(2014) 125

Combined t' search in I+jets and multileptons

- In multilepton channels events are separated by backgrounds
 - I2 cathegories, cut and count experiment in each

- same-sign dilepton events
- Opposite sign same flavor leptons + one extra lepton

Search for b' pair production in I+jets

- Single lepton, at least 4 jets, one b-tag
- Again, focus on boosted (vector-boson-tagged) jets

- Only ST considered to be more model-independent
- Sensitive to tWtW, tWbZ, tWbH, bZbZ, bZbH, bHbH final states

Combined result in BR plane: b'

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

Combined result in BR plane: t'

	Branc	hing Frac	tions	expected	observed		
Scenario	$T{\rightarrow}bW$	$T \rightarrow tH$	$T{\rightarrow} tZ$	limit (GeV)	limit (GeV)		
(0)	0.5	0.25	0.25	773	696		
(1)	0.0	0.0	1.0	813	782		
(2)	0.0	0.2	0.8	798	766		
(3)	0.0	0.4	0.6	790	747		
(4)	0.0	0.6	0.4	783	731		
(5)	0.0	0.8	0.2	773	715		
(6)	0.0	1.0	0.0	770	706		
(7)	0.2	0.0	0.8	794	758		
(8)	0.2	0.2	0.6	786	739		
(9)	0.2	0.4	0.4	777	717		
(10)	0.2	0.6	0.2	767	698		
(11)	0.2	0.8	0.0	766	694		
(12)	0.4	0.0	0.6	786	734		
(13)	0.4	0.2	0.4	776	705		
(14)	0.4	0.4	0.2	766	693		
(15)	0.4	0.6	0.0	762	690		
(16)	0.6	0.0	0.4	779	703		
(17)	0.6	0.2	0.2	771	693		
(18)	0.6	0.4	0.0	769	687		
(19)	0.8	0.0	0.2	779	695		
(20)	0.8	0.2	0.0	777	689		
(21)	1.0	0.0	0.0	785	700		

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

Top partner with charge 5/3e

- Focus on same-sign dilepton channel
 - Leptonic W bosons from same $T_{5/3}$
- Understanding same-sign fake and prompt lepton background
 - Non-prompt background determined on data
 - Prompt: rare decays from MC:
 - WW, ZZ, ttbarW, ttbarZ, WWW

src: B2G-12-012,, Phys.Rev.Lett 112 (2014) 171801

Top partner with charge 5/3e

- Very busy environment: require same-sign leptons outside Z boson window and HT>900 GeV
- High-mass leads to merging of objects:
 - Substructure considered as Vtagged jets or top-tagged jets
- Cross section limits exclude q=5/3e top partners with mass up to 770 GeV/c²

src: B2G-12-012,, Phys.Rev.Lett 112 (2014) 171801

CMS ttbar+DM

- Searches for threshold ttbar production with low missing ET
- missing L 1 • Complementary to more SUSY-inspire searches that for example focus on stop+LSP pair production CMS-B2G-13-004, (19.6 fb⁻¹@ 8 TeV)

10000000

Vrije Universiteit Brussel

Freya Blekman (IIHE-VUB) Vrije Universiteit Brussel

CMS monotops

CMS monotops

- Analysis investigates E_Tmiss and b invariant mass of three-jet system recoiling against E_rmiss
- After b-tagging the signal should be 20 visible as a peak at the top quark mass
- background, dominated by ttbar No excess observed above SM

50 data $p_{\tau}^{3 \text{ jets}} > 60, 60, 40 \text{ GeV}$ Z+jets W+iets ∉_⊤ > 350 GeV 1 b tag VV Single Top veto e, µ 30 Vector DM (m=700 GeV) 10 1.5 0.5 0₀ 200 400 600 800 1000 m^{3 jets} (GeV) CMS-B2G-12-022, hep-ex:1410.1149, submitted to PRL, (19.7 fb⁻¹@ 8 TeV)

Vrije Universiteit Brussel

Freya Blekman (IIHE-VUB) Vrije

CMS monotops

- Limits set for Scalar and vector couplings
- No mapping to flux or coupling strength limits as in monojet/monophoton searches

CMS-B2G-12-022, hep-ex:1410.1149, submitted to PRL, (19.7 fb⁻¹@ 8 TeV)

Freya Blekman (IIHE-VUB) Vrije

Conclusion & Outlook

- CMS has dedicated searches program in the top sector
 - Top-like Exotica
 - = Beyond two generations (B2G)
- Pushing the envelope:
 - very stringent limits
 - spearheading new reconstruction
 techniques
- Some 'final word' papers in pipeline – but these techniques will really flourish at 13 TeV

