

Review of the status and future prospects for dark matter searches at colliders

Sarah Alam Malik Imperial College London

Composition of the Universe

Copernicus : Earth is not the center of the Universe!

Galileo: use of telescope, confirmed Copernican model, Jupiter has orbiting moons, Earth just another planet

Hubble : each speck of light is another galaxy, our galaxy one of billions.

Evidence for Dark Matter how do we know its there?

Not enough mass

Rotation curves of galaxies

Gravitational lensing

Galaxy Cluster Abell 1689 Hubble Space Telescope • Advanced Camera for Surveys

Gravitational lensing

Actual Quasar Light
 Image Light

All experimental evidence for dark matter has come from observation of its gravitational influence :

- Can a modification of the laws of gravity explain this?

foreground
bending of l
give multiple

Earth

OR

- Do we need to introduce a new form of matter?

Galaxy Cluster Abell 1689 Iubble Space Telescope • Advanced Camera for Surveys

Bullet cluster

Optical image from Magellan and Hubble

Optical +X-ray

hot gas detected by Chandra, containing most of normal matter

Optical + gravitational lensing

Most of the mass in the cluster, measured by gravitational lensing, shown in blue

Dark matter exists What is it made of?

What properties should a DM candidate have?

- non-relativistic
- long lived
- interacts gravitationally
- no electric charge or color charge

The Standard Model

Remarkably successful theory!

Passed rigorous tests performed by decades of experiments

SM provides no candidate to explain the most common form of matter - no neutral, heavy, non-relativistic and long-lived particle

Weakly Interacting Massive Particles (WIMPs)

- Postulate a new species of elementary particles 0.01 0.001 0.0001 - They are produced in the Big Bang and interact 10-6 10-Number Density via : $\chi + \chi \leftrightarrow SM + SM$. Increasing $\langle \sigma_A v \rangle$ 10-1 10-8 10-9 10-10 - As the universe expands and the temperature 10-11 falls, they become diluted, and eventually can't find 10-12 Comoving 10-13 each other, so they 'freeze out'. 10-14 10-10 "freeze-out" 10-16 - Their relic density is measured by their interaction N_{EQ} 10-17 10-18 strength, inversely proportional to the annihilation 10-19 cross-section (< AV >) 10-20 10 100 x=m/T (time \rightarrow)

Weakly interacting particles with weak-scale masses naturally provide the right relic abundance - "WIMP miracle"

1000

Searches for dark matter

- $\chi + \chi \rightarrow$ SM + SM is the only process important for determination of relic abundance

All three approaches to detecting dark matter probing the same interaction

- $\chi + \chi \rightarrow SM + SM$ is the only process important for determination of relic abundance

- $\chi + \chi \rightarrow SM + SM$ is the only process important for determination of relic abundance

Direct detection experiments

- Aim to observe recoil of dark matter off nucleus
- Typical recoil energy 1- 100 keV
- elastic scattering can be spin-dependent or spinindependent

Direct detection experiments : Status and challenges

Searches at colliders

	LHC can produce heavier
Supersymmetry	Extra dimensions
- symmetry between fermions and bosons	-In UED, the dark matter candidate is
- heavy super-partners for each SM	a massive vector particle which is
particle	stable
- lightest SUSY particle (LSP) is neutral,	- In Randall-Sundrum, the right-
stable. Good candidate for dark matter	handed neutrino is stable

Theories designed to address the gauge hierarchy problem naturally

- predict stable, weakly interacting particles with mass ~ weak scale
- the correct relic abundance required to be dark matter.

Energy

Phenomenology

Assumptions:

- DM particle is only new state accessible to the collider
- Effective field theory so interaction between DM and SM particles is contact interaction

Phenomenology

Assumptio

- DM part - Effective
- Mediato

t interaction

Phenomenology

Assumptio

- DM part
- Effective
- Mediato

ct interaction
Phenomenology

t interaction

Phenomenology

Assumptions:

- DM particle is only new state accessible to the collider

- Effective field theory so interaction between DM and SM particles is contact interaction

Operators Γ describe scalar, pseudoscalar, vector, axial vector, tensor interactions

Phenomenology

- ➡ DM neutral and weakly interacting, escape detection.
- only infer presence from imbalance in transverse momentum of all visible particles
- Search for DM particles recoiling off a jet/photon/X from the initial state

Signatures for dark matter searches: Mono-X

A monojet event

Monojet search

Monojet search

At the heart of all DM searches at colliders : Missing transverse energy (MET)

- challenging quantity to measure
- sensitive to mis-measurements, detector effects, backgrounds
- but well controlled

Limits on dark matter - monojet search

CMS EXO-12-048

Collider limits comparable and complementary to direct detection experiments

Searches for dark matter with mono-X

Many different signatures employed to search for dark matter at LHC, will become especially important if signal is observed by collider/DD/ID experiments

DM at colliders phenomenology

From Tim Tait

DM at colliders phenomenology

From Tim Tait

Effective field theory

Beltran, Hooper, Kolb, Krusberg, Tait, 1002.4137 Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1005.1286 Bai, Fox, Harnik, 1005.3797 Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1008.1783 Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1009.0008 Fox, Harnik, Kopp, Tsai, 1103.0240 Fortin, Tait, 1103.3289 Cheung, Tseng, Yuan, 1104.5329 Shoemaker, Vecchi, 1112.5457

- Assume mediator heavy enough to be integrated out
- Use EFT operators to describe SM-DM interaction
- Pro: Limited number of degrees of freedom (interacton scale, DM mass).
- Con: Given energy scales being probed by collider, not always a valid assumption for us

Beyond EFT : Simplified models of dark matter

Minimal Simplified model of dark matter

arXiv:1407.8257 O. Buchmueller, M. Dolan, S.A. Malik, C. McCabe

s-channel

Define simplified model with (minimum) 4 parameters		DM		Consider comprehensive set of diagrams for mediator	
Mediator mass (M _{med})	DM mass (М _{DM})	Dirac fermion	Scalar - real	Vector	Axial-vector
gq	gdм	Majorana fermion	Scalar - complex	Scalar	Pseudoscalar

Simplified models of dark matter

Imperial College

5

ondor

11/10/14

Beyond EFT : Simplified models of dark matter

With simplified models, several additional things come into play:

- Searches for the mediator itself
- Additional search signatures
- Enables a more equal footing comparison with direct detection experiments.

ATLAS-CMS Dark Matter Forum formed; to reach consensus on prioritised, benchmark set of simplified models for early Run2 searches

Elucidates more accurately the complementarity between collider and direct detection experiments

Elucidates more accurately the complementarity between collider and direct detection experiments

Complementarity between collider and direct/indirect searches

Fermi Large Area Telescope (Fermi-LAT) see a gamma-ray excess around the galactic center - generated much interest
Mass and annihilation cross section required to explain excess consistent with WIMPs

Large astrophysical uncertainties - need corroborative evidence from colliders or direct detection experiments

➡Many models proposed to explain excess, common feature is pseudoscalar mediator (inaccessible to direct detection expts, gives suppressed spin-dependent interactions)

Complementarity between collider and direct/indirect searches

arXiv:1505.07826, O. Buchmueller, S. Malik, C. McCabe, B. Penning

	2012	2015-2016	~2020
Energy	8 TeV	13 TeV	13 TeV
Luminosity	20 fb ⁻¹	30 fb ⁻¹ ?	300 fb ⁻¹

Searches for mediator - constraints from dijet searches

Dijet searches take out sizeable region of parameter space for low coupling

 If we open up decay channels of mediator to leptons etc, then dilepton searches also become relevant

Invisible Higgs searches

assuming SM production cross section and kinematics

Invisible Higgs searches

• DM can couple to the Higgs sector; $H \rightarrow \chi \chi$

CMS-PAS-HIG-15-012

• Limits on branching fraction of Higgs to "invisible" particles used for limits on DM

Future projections

LHC scenarios

	2012	2015-2016	~2020	HL-LHC
Energy	8 TeV	13 TeV	13 TeV	13/14 TeV
Integrated Iuminosity	20 fb ⁻¹	30 fb⁻¹?	300 fb⁻¹	3000 fb ⁻¹

Future projections : direct detection experiments

LZ : LUX-ZEPLIN

increase sensitivity by factor of 100 compared to LUX - expected online 2019

XENONIT

- backgrounds 2 orders of magnitude lower than XENON100
- increase sensitivity by factor of 100
- expected come online 2016

Next generation of direct detection experiments also expected to come online

Future projections : direct detection experiments

LHC - Run I

LHC - Run 2

LHC - Run 2

HL-LHC

HL-LHC

Projections for Higgs--> invisible

Studies on future projections with 14 TeV, High Luminosity LHC 3000 fb⁻¹ show that we may be able to constrain BF($H_{125} \rightarrow invisible$) at few-% level

Summary

- Searches for Dark matter at collider:
- via UV complete models like SUSY
- via generic mono-X signatures
- Higgs invisible decays
- Interpretation of searches:
- Shift from effective field theory approach which has several limitations to simplified models
- Mediator also accessible to collider, can be constrained from other collider searches
- Complementarity with direct detection experiments
- low mass DM
- spin-dependent interactions of DM
- Future projections, similar complementarity between collider and DD experiments
- Collider can probe all the way upto and beyond neutrino floor for some DM models
- Exclude/confirm an excess in the direct/indirect detection experiments