

Calorimetry for Cancer Proton Therapy – Can We Help?

Anastasia Basharina-Freshville

(University College London)

PT Calorimetry

Why Proton Therapy?

- More precise form of radiotherapy
- Precise tuning of the delivered dose to the patient through careful selection of proton beam energy
 - Due to energy loss profile of protons
 - And much smaller beam spot sizes
- Important for areas where we particularly want to avoid large doses of radiation to healthy tissue:
 - Head and neck
 - Central nervous system
 - In children

http://samhs.org.au/Virtual%20Museum/xrays/Braggs-peak-rxth/braggpeakrxth.htm

Why Proton Therapy?

- Range shifter and modulator used for a Spread Out Bragg Peak
- Alters beam energy to provide a uniform dose ٠ over the depth of the tumor

http://www.clatterbridgecc.nhs.uk/professionals/physicsdepartment/cyclotron/

5

SOBP

http://www.seattlecca.org/diseases/proton-therapy-head-neck-cancers.cfm

Proton Therapy Challenges Precise measurements of beam energy and energy spread

– Target: ~1% level

Our starting point!

Proton imaging

- Requires an increase in imaging resolution compared to X-ray based systems due to localisation of proton dose delivery
- Currently use a conversion factor to convert from X-Ray based imaging systems to proton therapy treatment plans, which introduces imprecision
- Currently, the patient is imaged away from the treatment any movement of the patient's anatomy introduces further imprecision

Neutron background

- Neutron background flux at proton therapy facilities is poorly known
- Must be measured to avoid adverse biological effects to the patient

Proposed Solutions

• Calorimetry approach for beam energy and spread measurements

The focus of this seminar

- Proton imaging:
 - Image with > 300 MeV proton beam, which will emerge from the body without significant energy deposition
 - Tomography approach:
 - A series of tracking layers upstream and downstream of the patient
 - Accurate calorimeter for energy measurements
 - Target: ~0.5 1% for 300 MeV imaging protons
- Neutron background:
 - Calorimetry approach (discussed in "Future Plans")

UCLH Proton Therapy Centre

- Use a particle accelerator (cyclotron or synchrotron) to get a 250 MeV proton beam
- Delivered to the patient through a gantry, which has to be big enough to deliver the beam from any angle: must be 3 stories tall!
- Three gantries
- Construction will begin in spring/summer 2015
- First patient treatment: three years from start of construction

Can we work on some of the challenges before then?

PT Calorimetry

SuperNEMO

supernemo

collaboration

2 m (assembled, ~0.5 m between source and calorimeter) •

- Neutrinoless double beta decay detector using NEMO3's tracker-calorimeter technique Target sensitivity: $T_{\frac{1}{2}} > 10^{26}$ years $\rightarrow \langle m_{v} \rangle \langle 0.04 - 0.1 \text{ eV}$
- Modular detector with a planar geometry

1 module (of 20) consists of:

Source foil:

- 5 kg (total of 100 kg) of 40 mg/cm² (4 x 2.7 m²)
- ⁸²Se (high $Q_{\beta\beta}$, long $T_{1/2}^{2\nu\beta\beta}$, proven enrichment technology): starting baseline

- ¹⁵⁰Nd and ⁴⁸Ca being considered depending on enrichment possibilities

Tracker: ~2000 drift cells in Geiger mode \rightarrow particle identification (for background suppression)

Calorimeter: ~550 scintillator blocks + PMTs \rightarrow energy and time of flight measurements of particles

Passive shielding surrounding each module

From NEMO3 to SuperNEMO

• Energy resolution is one of the main challenges (factor of 2 improvement):

- SuperNEMO scintillator has to be organic plastic scintillator (high light yield, low electron back-scattering, high radiopurity, fast timing)
 → Can 7% FWHM at 1 MeV be reached for organic solid plastic scintillator?
- First step in SuperNEMO R&D: secured STFC funding for energy resolution R&D

Energy Resolution

σ	sigma of distribution
E	mean of distribution
IN _{pe}	number of photo-electrons
N _{ph} /E _{e.}	number of photons per unit energy
E ^{light}	light collection efficiency
	quantum efficiency of the photo-cathode
ε	PMT collection efficiency

scintillator light output

Physically translates to:

- Scintillator: material, surface treatment, geometry
- Reflector: material, reflectivity coefficient, specular/diffusive
- Optical coupling quality: material, geometry, light guides
- Photomultiplier Tubes (PMTs): quantum efficiency (QE), collection efficiency, gain of the first dynode

Combined in an "optical module":

scintillator wrapped in reflective material coupled to a PMT

SuperNEMO Calorimeter Test Bench

Excite scintillator with a monochromatic electron source (approximates the delta function) → any smearing of distribution is due to detector properties

UCL:

- ²⁰⁷Bi source: 976 keV and 482 keV K-shell conversion electrons
- Fit: deconvolution of X-rays, γs, L-shell and Mshell conversion electrons

Bordeaux:

 ⁹⁰Sr spectrometer: ⁹⁰Sr beam passed through a magnetic field to select monochromatic electrons of known energy

• Fit: Gaussian

SuperNEMO Calorimeter R&D: Simulations

- Full calorimeter simulations:
 - GENBB event generator
 - Physics simulations with GEANT4 (optical photon transport in scintillator detectors)
- The model accounts for wavelength dependence of optical properties, all of which have been experimentally measured, of the:
 - scintillators (self absorption and re-emission)
 - reflective wrappings
 - photomultipliers (QE)
 - optical coupling materials
 - refractive index of optical materials

SuperNEMO Calorimeter R&D: Scintillators

Block shape studies:

C256: H276:	cubic 256 ² x 190 mm ² hexagonal 276 mm diameter with 12 mm minimum depth
C308:	cubic $308^2 \times 190 \text{mm}^2$
T308:	cubic $308^2 \times 190 \text{mm}^2$ with tapered sides

• Material: polystyrene (PST) vs. polyvinyl toluene (PVT)

Material	$\frac{\Delta E}{E}(\%)$	f_{FWHM}
NEMO-3 PST	8.9 ± 0.2	1.
EJ-200 PVT	$8.3\ \pm 0.2$	1.07 ± 0.03
EJ-204 PVT	$7.8\ \pm 0.2$	$1.12\ {\pm}0.03$

- Close collaboration with manufacturers (JINR Dubna, ISM Kharkiv, ENVINET, ELJEN) for contents of:
 - PPO scintillating agent
 - POPOP wavelength shifter
- Surface finishing: polished vs. depolished
 - All surfaces depolished (machine finish), with the face with the hemispherical cutout polished

SuperNEMO Calorimeter R&D: PMTs

• Photocathode QE:

- Bi-alkali alloy development for photocathode material has achieved QE > 40%
- Close collaboration with Hamamatsu to optimise QE to the emission spectra of the scintillator

- Collection efficiency (close collaboration with Hamamatsu on 8" R5912-MOD tube):
 - Number of dynode stages reduced from 10 to 8
 - Voltage divider optimisation
 - Improved from <70% to ~80%

SuperNEMO Calorimeter R&D: PMTs

Photocathode uniformity:

 Close collaboration with Hamamatsu to improve photocathode uniformity across the entire surface of the PMT

• Timing:

- Reducing the number of dynode stages improves the timing of the PMT by reducing the time transition spread (TTS)
- Gain and Linearity (a big achievement!):
 - Reducing the number of dynode stages and opitmising the voltage divider decreases the gain:
 ~1 x 10⁵

 \rightarrow Good linearity (< 2% for very high light levels) whilst good gain of the 1st dynode and therefore high collection efficiency

SuperNEMO Calorimeter R&D: Reflective Material & Coupling

- Reflective material:
 - High reflectivity, radiopure, low Z and low density (to reduce backscattering)

Good optical coupling between scintillator and PMT essential for uniform and complete light collection

Optical	Refractive	$\frac{\Delta E}{E}(\%)$	f_{FWHM}
Material	Index		
Alcohol	1.37	9.4 ± 0.2	1.
Gel	1.46	$8.6\ \pm 0.2$	$1.08\ {\pm}0.3$
Gel	1.52	$8.4\ \pm 0.2$	$1.11\ \pm 0.3$
RTV 615	1.41	$9.4\ {\pm}0.2$	$1.00\ \pm 0.3$

 Direct coupling of PMT to hemispherical cutout in scintillator gave the biggest impact in energy resolution improvement.

PT Calorimetry

SuperNEMO Calorimeter R&D: Summary

Scintillator

- Geometry
- Surface (polishing + reflector)
- Material PS \rightarrow PVT

Photomultiplier

- Quantum efficiency
- Optimisation of operation
- Changing 5" \rightarrow 8" and direct coupling

Optimised SuperNEMO Optical Module Design

EJ-200 hexagonal PVT block:

276 mm diameter 193 mm deep, minimum thickness between PMT and scintillator: 100 mm

R5912-MOD Hamamatsu 8" PMT:

Maximum quoted QE: 33% 32% QE at 400 nm

Wrapping:

Sides: 75 μ m of PTFE (Teflon) ribbon Sides and entrance face: 12 μ m of Mylar

Back to Proton Therapy...

• With this fantastic energy resolution of 7.5% FWHM at 1 MeV can we apply the SuperNEMO optical module technology to proton therapy beam monitoring and proton imaging?

Challenges: from SuperNEMO (electrons) to a proton beam

- Very high intensity of events at a proton beam (~25 MHz):
 - A proton beam delivers a random number of protons per bucket, which will worsen the energy resolution measured
 - We require 1 proton per bucket for a good detector response
- Scintillator quenching for protons:
 - For a plastic scintillator, the scintillator response is nonlinear with the amount of energy deposited in it
 - Amount of deviation \rightarrow "quenching"
 - Characterised by Birk's law:

$$\frac{dY}{dx} = \frac{S}{1 + kB(dE/dx)} \times \frac{dE}{dx}$$

dY/dxlight yield per unit path lengthdE/dxenergy lost by particle per unit path lengthkBrelates density of ionisation to energy loss= 0.207 mm/MeVSabsolute scintillation efficiency

- Becomes important for large dE/dx and ionisaion density → important for protons, which have a large dE/dx when they slow down
- Energy range:
 - **SuperNEMO** optimised for electrons from 0.5 4 MeV for double beta decay
 - For proton therapy we require ~O(100 MeV)

27/02/2015

Step 1: GEANT4 Simulations

- A pencil proton beam (60 MeV) simulated, positioned 70 cm underneath the entrance face of the scintillator block
- Scintillator modeled as a square block (256 mm x 256 mm x 120 mm) with scintillator composition fully described
- Quenching of scintillation light in plastic scintillator for protons
- Energy deposited smeared according to Poissonian fluctuations in the number of generated photo-electrons
- The number of photo-electrons at per MeV taken from test bench data (SuperNEMO calorimeter R&D): 982 photo-electrons per MeV (for an energy resolution of 7.5% FWHM at 1MeV)

Step 1: GEANT4 Simulations

Step 2: Equipment Setup

).179677, 1200.00

us

Step 3: ²⁰⁷Bi Test at UCL

- Optical module resurrected after some years: re-measure energy resolution!
 - New test bench at UCL: a thin scintillator introduced into set up, which triggers DAQ only when an electron passes through it
 - \rightarrow Gammas removed, fit simplified to triple Gaussian of 976 keV and 482 keV peaks

- Only currently operational proton beam treatment centre in the UK
- Home to the Douglas Cyclotron → produces 60 MeV proton beam for the treatment of ocular melanomas (penetration of 60 MeV protons: 31 mm in water)
- Double scattering beam technique:

- Beam accelerated to single energy
- Beam passes through range-shifter wheel that modulates the proton beam energy to reach front/back of target volume
- Scatterer enlarges beam to cover whole volume
- Collimator shapes outer edge of beam to target area

 Four full days in total of proton beam access granted to UCL in December 2013 and December 2014

27/02/2015

- The proton rate from the beam was carefully controlled by:
 - Inserting brass collimators with varying diameters (0.5 mm 10 mm) into the beam nozzle (~30 cm upstream of the optical module)
 - Adjustment of the ion source gas supply
 - Adjustment of the discharge current
 - Adjustment of the cyclotron RF phase
- Over the four days of test beam the dependence of measurements on the following parameters was studied:
 - Collimator diameter size (0.5 mm 10 mm)
 - Beam settings
 - Operating voltage of the PMT (800 V, 900 V)
 - Increasing HV increases collection efficiency of the PMT and therefore achieves a better energy resolution
 - Note: standard operating HV for this PMT is 1500V, but due to such high light levels (100,000 photons → 30,000 photo-electrons)
 - Integrating window of acquisition on the CAEN digitiser (50 ns, 100 ns, 200 ns): sensitive to pile up effects

ADC Distribution: 800V, 2 mm collimator, 100ns gate

Pile Up: Varying Collimators

Considering Measuring Parameters

	PMT HV (V)	Acquisition window (ns)	Collimator diameter (mm)	Energy resolution, % FWHM	Reducing the acquisition gate from 200ns to 100ns shows considerable improvement
	800	50	2	1.6 ± 0.18	(ensures we only look at 1
Г	- 800	100	2	1.58 ± 0.27	But we don't win anything
	800	200	2	2.11 ± 0.42	At 900 V: Improved energy resolution but are we linear at 900 V? (See later)
	900	50	2	1.1 ± 0.13	
	900	100	2	0.97 ± 0.16	
	900	200	2	1.27 ± 0.19	
	800	200	3	2.32 ± 0.43	Further confirmation that 2mm diameter collimator is
	800	200	4	2.16 ± 0.41	optimal for reducing intensity

Our optimal parameters for measurements are:

PMT HV: 800 V Acquisition window: 100 ns Collimator diameter: 2 mm

Energy Dependence on Resolution

 Energy of protons incident on scintillator varied by placing absorbers (PMMA plates) of known thickness ~1.8 m upstream of the optical module

Energy Resolution as a Function of Proton Energy: 800V

Intrinsic Energy Resolution of Optical Module

- How much of the measured energy resolution is due to the proton beam and how much is due to the "intrinsic" energy resolution of the detector?
- From MC (1.48%) we already know that most of the energy resolution measured with the proton beam (1.58 ± 0.27) is from the intrinsic resolution of detector:
 - Use MC and data to put a limit on the energy spread of the 60 MeV Clatterbridge beam:

Proton energy spread: 0.65 ± 0.66 % FWHM or limit on spread: FWHM (60 MeV): <1.56% at 90% CL

- Also tests carried out at UCL:
 - Pulse PMT with a 400nm LED at an amplitude and width that will give a peak at the same ADC counts as the proton beam spectra
 - Fit the acquired spectra with a Gaussian and extract energy resolution

BUT: LED is operating at very "high" parameters (~8V and 40ns width), therefore the width is very sensitive to noise and the LED distribution would be better monitored with a device such as a pin diode

→ future measurement!

Intrinsic Energy Resolution of Optical Module

Energy Resolution as a Function of Proton Energy: 800V, 100ns gate

• Proton beam energy resolution much worse than intrinsic energy resolution at lower energies due to scattering of protons

27/02/2015

Linearity: 800 V

- We want to run the PMT at higher voltages (can run at up to 1500V) as this will increase the PMT's collection efficiency and will improve the energy resolution: 0.97 ± 0.16 % FWHM from measurements (900V, 100 ns gate)
- BUT we have a LOT of light (tens of thousands of photo-electrons): can we trust this result?
 - Look at linearity

Proton Energy as a Function of ADC Mean: 800V

Measuring Quenching

• Fitting linearity curves gives us a measurement of scintillator quenching:

Proton Energy as a Function of ADC Mean: 800V

Linearity: 900 V

Proton Energy as a Function of ADC Mean: 900V

"Unfolding": Getting a Grip on Non-Linearity

- For our 900 V data we see non-linearity > 10 %
- BUT can we take into account non-linearity of our equipment to "unfold" the true energy resolution?
- We want to be able to do this:
 - To potentially increase HV even further (to 1000 V or above) to increase collection efficiency and hence improve the energy resolution
 - For proton imaging: requires protons > 300 MeV, which will give a huge amount of light and non-linearity will be inevitable
- Work currently on-going to determine the best way to:
 - Convert the data from ADC counts to MeV ("visible energy" due to quenching)
 - Fit the visible energy data to extract the "unfolded" energy resolution (with non-linearity taken out)
 - Compare results for 800 V and 900 V

Future Plans

- 1. We already have a great result for energy resolution, but can we push it any further?
 - Use the same technology, but reduce in size to allow us to collect more light
 - Use 3" UBA (43% QE) Hamamatsu PMTs used for SuperNEMO calorimeter R&D coupled to small EJ-200 scintillator. Two scintillators ordered:

- Test at UCL with ²⁰⁷Bi and in the 60 MeV proton Clatterbridge beam
- 2. Given the amount of light we have (~30,000 photo-electrons), consider using alternative photo-detectors:
 - High QE, low gain
 - Removes any non-linearity
 - CCD, SiPM, etc.

Future Plans

- **3.** We need to think about practical arrangements for beam monitoring and proton imaging:
 - Talk to clinical scientists and medical physicists at UCLH for specific design constraints needed to produce a deliverable product
 - Collaborate with the PRaVDA (Proton Radiotherapy Verification and Dosimetry Applications)
 Consortium funded by the Wellcome Trust:

"The world's first silicon-based detector system that will allow in-situ monitoring of the incident dose, in terms of its fluence, energy and distribution both prior to and during treatment."

Silicon radiation hard detectors used for → accurate tracking → from PRaVDA

Calorimetry with optical modules \rightarrow from UCL

Future Plans

4. Neutron background simulations and measurements:

- Protons create secondary fast neutrons from interaction with the beam pipe etc.
- This neutron background flux and spectra at proton therapy facilities is poorly known
- Must be measured to avoid adverse biological effects to the patient
- Try to use the same SuperNEMO technology to measure neutron flux and spectra
- 1. Collaborate with dark matter colleagues at UCL for neutron simulations
- 2. Calibrate the detector with a spectrum of known neutrons at the National Physical Laboratory (NPL) to get detector response
 - Radionuclide sources for broad energy spectra or
 3.5 MV Van de Graaf accelerator for monoenergetic neutrons
 - Use pulse shape analysis provided by the CAEN DT5751 digitiser
 - Make any modifications if necessary
 - Apply detector response in simulations
- 3. Measure the neutron rate and spectrum at Clatterbridge

http://www.npl.co.uk/measurement-services/neutron-measurements/

Summary & Conclusions

 An optical module designed for the SuperNEMO experiment has measured the 60 MeV proton beam at Clatterbridge with an energy resolution of:

- An important result for the future of proton beam monitoring and proton imaging
- Lots to do!!!
 - Ongoing data analysis from four days of Clatterbridge test beam data in December 2013 and December 2014
 - Can we do better with the same technology reduced in size?
 - Alternative photo-detector technologies
 - Lots of collaboration with colleagues coming up!

Acknowledgements

• UCL participation in this work:

Simon Jolly, Ruben Saakyan, Derek Attree, Anastasia Basharina-Freshville and Sophie Neal

 A HUGE thank you to Andrzej Kacperek and the fantastic team at Clatterbridge for all of their expertise and help!

Backup Slides

ADC Distribution: 800V, 2 mm collimator, 100ns gate

Backup Slides

ADC Distribution: 800V, 2 mm collimator, 100ns gate

